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1. Genus
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Genus

De�nition

The genus of an irreducible algebraic curve C is the dimension of the space of regular 1-forms on a
smooth projective curve birational to C.

Main birational invariant of curves

Characterizes rational curves (g = 0)

Topology of Riemann surfaces (g = number of handles)

g = 0 g = 1 g = 2

Abel-Jacobi map C → Cg/Λ

Canonical embedding C → Pg−1

Hasse-Weil bounds (rational points over �nite �elds)
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Main result

C a plane curve of degree d over a perfect �eld K of characteristic zero or greater than d.

Theorem (Poteaux-Weimann '18)

We can compute the genus of C with Õ (d3) arithmetic operations over K.

Improves Õ (d7) of Bauch'12 (all characteristic) and Õ (d5) of Poteaux-Rybowicz '15.

Case K = Q. Monte-Carlo algorithm with bit complexity Õ (d3 log(h)).
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Strategy

1 Consider the completion C ⊂ P1 × P1 and the �nite morphism

π : C → P1

(x, y) 7→ x

2 For all critical places q ∈ P1 and all places p ∈ C above q, compute :
I Index of rami�cation ep
I Residual degree fp

3 Apply the Riemann-Hurwitz formula

g = 1− dy +
1

2

∑
q

deg(q)
∑
p|q

fp(ep − 1)

Main task : step 2
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F (x, y) = y2 − x(x − 1)(x + 1)

C

P¹

p  ₃

q  ₁ q₂ q₃ q₄ 

p₁  p₂ 

p₄ 

g(C) = 1− dy +
1

2
((e1 − 1) + (e2 − 1) + (e3 − 1) + (e4 − 1)) = 1
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F (x, y) = y2 − x(x − 1)2

C

P¹

p₂₂

 

q  ₁ q₂
 

p₁  p₂₁
 

p₃
 

q₃

g(C) = 1− dy +
1

2
((e1 − 1) + (e21 − 1) + (e22 − 1) + (e3 − 1)) = 0
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2. A fast algorithm of Newton-Puiseux type
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Rational Puiseux Expansions (above 0)

Bijective correspondence between :

Places p1, . . . , pρ of C above 0.

Irreducible factors F1, . . . Fρ of F in K[[x]][y].

Rational Puiseux expansions R1, . . . , Rρ of F above 0 :

Ri(T ) = (µiT
ei , Si(T )) ∈ Ki((T ))

2
,

with ei the index of rami�cation and fi = [Ki : K] the residual degree.

Remark

The set (ei, fi)i=1,...,ρ depends only on the singular parts of the RPE's (suitable truncation).
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Fast computation of Puiseux expansions

Denote δ = valx(Resy(F, Fy)).

Theorem (Poteaux-Weimann '18)

Singular parts of all RPE's above 0 within Õ (δdy).

Corollary

Singular parts of all RPE's above all critical places within Õ (d3).

Proof of Corollary:

1 Critical places identify with prime factors q of R = Resy(F, Fy) (special care at in�nity).

2 Apply previous theorem above each q. Sum over q gives Õ (deg(R)dy) ⊂ Õ (d3).

3 Do not factorize R (too costly) ! Use square-free factors and rely on dynamic evaluation.
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De�nition

1 The Newton polygon N (F ) is the lower convex hull of the set of exponents of F .

2 To each edge ∆ ∈ N (F ) is attached a characteristic polynomial Φ∆ ∈ K[z].

F (x, y) = x
9 − y6

x
6 − 2y

11
x

5
+ y

15
x

5
+ y

8
x

4
+ y

11 − 4y
7
x

2
+ 4y

3
x

4

Exponent of x

Exponent of y

4y³x⁴

-4y x² ⁷

y¹¹

3 7 11

4

2

F|∆ = y
11 − 4y

7
x

2
+ 4y

3
x

4
= y

3
x

4

((
y2

x

)4

− 4

(
y2

x

)2

+ 4

)
︸ ︷︷ ︸

Φ∆(z)=z4−4z2+4=(z−2)2
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Algorithm (Poteaux-Rybowic '15, variant of Duval '89)

For each edge ∆ = (q,m) of N (F ) and each prime factor φ of Φ∆:

1 G← F (αxq, xm(y + β)) for some α, β ∈ K[z]/(φ(z)) (Puiseux transform)

2 H ← Weierstrass polynomial of G (Hensel lifting)

3 F ← H(x, y − c), with c = coe�(H, ydH−1)/dH (Abhyankhar's trick)

4 Update the involved RPE

I If F = y : singular part is computed.

I Else : recursive call on F (Primitive elements)

ρ log(δ) recursive calls

Sharp truncation bounds

Dynamic evaluation

Primitive elements

 =⇒ Complexity Õ (d
2
δ)
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Divide and conquer

Proposition

Truncation mod xδ allows to compute all RPE's.

Truncation mod x2δ/dy allows to compute at least half of the RPE's.

Algorithm (Poteaux-Weimann '18)

1 Use previous algo with precision 2δ/dy to compute at least half of the RPEs of F .

2 Let G be the corresponding factor of F . Compute F = GH mod x2δ/dy .

3 Compute F = GH mod xδ (generalized Hensel's lifting).

4 Recursive call on H mod xδ .

dy(H) ≤ dy/2 =⇒ O(log(dy)) recursive calls =⇒ Complexity Õ (δdy) !
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Fast factorization in K[[x]][y]

Suppose that F ∈ K[[x]][y] has irreducible factors F1, . . . , Fρ ∈ K[[x]][y].

Theorem (Poteaux-Weimann '18)

Let n ∈ N. We can compute the Fi's modulo xn within Õ (dy(δ + n)).

Proof : Fast computation of RPE's and generalized multifactor hensel lifting.

Application : Fast factorization in K[x, y] by recombination of the Fi's (Weimann '17)

Corollary

Irreducibility test in K[[x]][y] within Õ (dyδ).

Faster irreducibility test ? Hopeless using Newton-Puiseux type algorithm...
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Faster irreducibility test

VS

Theorem (Poteaux-Weimann '19)

Irreducibility test in K[[x]][y] with complexity Õ (δ).

Algorithm quasi-linear in the size of the input

Computes also the equisingularity class of the germ (F, 0)

Generalizes Abhyankhar's criterion : uses approximate roots.

martin.weimann@upf.pf Genus of plane curves ACA 2019 15 / 18



Proposition (Abhyankhar '89)
Assume F monic and let N dividing dy . There exists a unique monic polynomial ψ ∈ K[[x]][y] such that
F has ψ-adic expansion

F = ψ
N

+ aN−2ψ
N−2

+ aN−3ψ
N−3

+ · · ·+ a0.

We call ψ the Nth-approximate root of F .

Algorithm (Poteaux-Weimann '19)

1 N ← dy

2 While N > 1 :

1 ψ ← Nth-approximate root

2 Compute the ψ-adic Newton polygon. If not straight : Return False

3 Compute the ψ-adic characteristic polynomial. If not prime power : Return False

4 N ← N/q deg(φ) (q deg(φ) ≥ 2)

3 Return True.

Computations mod x2δ/dy =⇒ Total cost : Õ (δ) !
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3. Last slide...
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1 Fast computation of RPE's with various applications:

I Desingularization of plane curves (genus, equisingularity classes, etc.)

I Factorization in K[[x]][y] and K[x, y]

I Integral basis of function �elds (Van Hoeij algorithm)

I Regular di�erentials and adjoint polynomials (jacobian, parametrization)

2 Quasi-optimal irreducibility test in K[[x]][y].

3 Ongoing research:

I Use approximate roots for factorization in K[[x]][y]

(easier implementation and better practical behaviour)

I Generalization over local rings of arbitrary characteristic

(try to improve the Õ (dδ2) of Guardia-Montes-Nart '08)

I Implementation.
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