Computing the genus of plane curves with cubic complexity in the degree

Adrien Poteaux* and <u>Martin Weimann</u>*

*: CRIStAL - University of Lille

*: GAATI - University of French Polynesia

July 16-20, 2019

ACA, Montreal

1. Genus

Definition

The genus of an irreducible algebraic curve C is the dimension of the space of regular 1-forms on a smooth projective curve birational to C.

- Main birational invariant of curves ۲
- Characterizes rational curves (q = 0)۰
- ۲ Topology of Riemann surfaces (g = number of handles)

q = 0 q = 1

- Abel-Jacobi map $C \to \mathbb{C}^g / \Lambda$ ۲
- Canonical embedding $C \to \mathbb{P}^{g-1}$ ۰
- ۲ Hasse-Weil bounds (rational points over finite fields)

Main result

• C a plane curve of degree d over a perfect field $\mathbb K$ of characteristic zero or greater than d.

Theorem (Poteaux-Weimann '18)

We can compute the genus of C with $\mathcal{O}^{\check{}}(d^3)$ arithmetic operations over $\mathbb{K}.$

- Improves $\mathcal{O}(d^7)$ of Bauch'12 (all characteristic) and $\mathcal{O}(d^5)$ of Poteaux-Rybowicz '15.
- Case $\mathbb{K} = \mathbb{Q}$. Monte-Carlo algorithm with *bit complexity* $\mathcal{O}(d^3 \log(h))$.

Strategy

()Consider the completion $\mathcal{C} \subset \mathbb{P}^1 imes \mathbb{P}^1$ and the finite morphism

$$egin{array}{cccc} \pi : & \mathcal{C} &
ightarrow & \mathbb{P}^1 \ & (x,y) & \mapsto & x \end{array}$$

2 For all critical places $q\in \mathbb{P}^1$ and all places $p\in \mathcal{C}$ above q, compute :

- Index of ramification e_p
- Residual degree fp

Apply the Riemann-Hurwitz formula

$$g = 1 - d_y + \frac{1}{2} \sum_{q} \deg(q) \sum_{p|q} f_p(e_p - 1)$$

Main task : step 2 ۲

$$\mathbf{g}(\mathbf{C}) = \mathbf{1} - \mathbf{d_y} + \frac{1}{2} \left((\mathbf{e_1} - \mathbf{1}) + (\mathbf{e_2} - \mathbf{1}) + (\mathbf{e_3} - \mathbf{1}) + (\mathbf{e_4} - \mathbf{1}) \right) = \mathbf{1}$$

martin.weimann@upf.pf

$$\mathbf{g}(\mathbf{C}) = \mathbf{1} - \mathbf{d_y} + \frac{1}{2} \left((\mathbf{e_1} - \mathbf{1}) + (\mathbf{e_{21}} - \mathbf{1}) + (\mathbf{e_{22}} - \mathbf{1}) + (\mathbf{e_3} - \mathbf{1}) \right) = \mathbf{0}$$

martin.weimann@upf.pf

2. A fast algorithm of Newton-Puiseux type

Rational Puiseux Expansions (above 0)

Bijective correspondence between :

- Places p_1, \ldots, p_{ρ} of C above 0.
- Irreducible factors $F_1, \ldots F_\rho$ of F in $\mathbb{K}[[x]][y]$.
- Rational Puiseux expansions R_1, \ldots, R_ρ of F above 0 :

 $R_i(T) = (\mu_i T^{e_i}, S_i(T)) \in \mathbb{K}_i((T))^2,$

with e_i the index of ramification and $f_i = [\mathbb{K}_i : \mathbb{K}]$ the residual degree.

Remark

The set $(e_i, f_i)_{i=1,...,\rho}$ depends only on the singular parts of the RPE's (suitable truncation).

Fast computation of Puiseux expansions

Denote $\delta = val_x(Res_y(F, F_y)).$

Theorem (Poteaux-Weimann '18)

Singular parts of all RPE's above 0 within $\mathcal{O}(\delta d_y)$.

Corollary

Singular parts of all RPE's above all critical places within $\mathcal{O}(d^3)$.

Proof of Corollary:

- **O** Critical places identify with prime factors q of $R = Res_y(F, F_y)$ (special care at infinity).
- 2 Apply previous theorem above each q. Sum over q gives $\mathcal{O}(\deg(R)d_y) \subset \mathcal{O}(d^3)$.
- On not factorize R (too costly) ! Use square-free factors and rely on dynamic evaluation.

Definition

1 The Newton polygon $\mathcal{N}(F)$ is the lower convex hull of the set of exponents of F. 2

To each edge $\Delta \in \mathcal{N}(F)$ is attached a characteristic polynomial $\Phi_{\Delta} \in \mathbb{K}[z]$.

$$F(x,y) = x^9 - y^6 x^6 - 2y^{11} x^5 + y^{15} x^5 + y^8 x^4 + \mathbf{y^{11}} - 4\mathbf{y^7 x^2} + 4\mathbf{y^3 x^4}$$

martin.weimann@upf.pf

Algorithm (Poteaux-Rybowic '15, variant of Duval '89)

For each edge $\Delta = (q, m)$ of $\mathcal{N}(F)$ and each prime factor ϕ of Φ_{Δ} :

2 $H \leftarrow$ Weierstrass polynomial of G

3 $F \leftarrow H(x, y - c)$, with $c = coeff(H, y^{d_H - 1})/d_H$ (Abhyankhar's trick)

Update the involved RPE

If F = y : singular part is computed.

Else : recursive call on F

(Primitive elements)

(Hensel lifting)

- $\rho \log(\delta)$ recursive calls
- Sharp truncation bounds
- Dynamic evaluation
- Primitive elements

 \implies Complexity $\mathcal{O}(d^2\delta)$

Divide and conquer

Proposition

- Truncation mod x^{δ} allows to compute all RPE's.
- Truncation mod $x^{2\delta/dy}$ allows to compute at least half of the RPE's.

Algorithm (Poteaux-Weimann '18)

1 Use previous algo with precision $2\delta/d_y$ to compute at least half of the RPEs of F.

- 2 Let G be the corresponding factor of F. Compute $F = GH \mod x^{2\delta/dy}$.
- Or G Compute $F = GH \mod x^{\delta}$ (generalized Hensel's lifting).

• Recursive call on H mod x^{δ} .

 $d_y(H) \leq d_y/2 \implies \mathcal{O}(\log(d_y))$ recursive calls \implies Complexity $\mathcal{O}(\delta d_y)$!

Fast factorization in $\mathbb{K}[[x]][y]$

• Suppose that $F \in \mathbb{K}[[x]][y]$ has irreducible factors $F_1, \ldots, F_{\rho} \in \mathbb{K}[[x]][y]$.

Theorem (Poteaux-Weimann '18)

Let $n \in \mathbb{N}$. We can compute the F_i 's modulo x^n within $\mathcal{O}(d_y(\delta + n))$.

- Proof : Fast computation of RPE's and generalized multifactor hensel lifting.
- Application : Fast factorization in $\mathbb{K}[x, y]$ by recombination of the F_i 's (Weimann '17)

Corollary

Irreducibility test in $\mathbb{K}[[x]][y]$ within $\mathcal{O}(d_y\delta)$.

• Faster irreducibility test ? Hopeless using Newton-Puiseux type algorithm...

Faster irreducibility test

Theorem (Poteaux-Weimann '19)

Irreducibility test in $\mathbb{K}[[x]][y]$ with complexity $\mathcal{O}(\delta)$.

- Algorithm quasi-linear in the size of the input
- Computes also the equisingularity class of the germ (F, 0)
- Generalizes Abhyankhar's criterion : uses approximate roots.

Proposition (Abhyankhar '89)

Assume F monic and let N dividing d_y . There exists a unique monic polynomial $\psi \in \mathbb{K}[[x]][y]$ such that F has ψ -adic expansion

$$F = \psi^{N} + a_{N-2}\psi^{N-2} + a_{N-3}\psi^{N-3} + \dots + a_{0}.$$

We call ψ the N^{th} -approximate root of F.

Computations mod $x^{2\delta/dy} \implies \text{Total cost} : \mathcal{O}(\delta) !$

3. Last slide...

Isot computation of RPE's with various applications:

- Desingularization of plane curves (genus, equisingularity classes, etc.)
- Factorization in $\mathbb{K}[[x]][y]$ and $\mathbb{K}[x, y]$
- Integral basis of function fields (Van Hoeij algorithm)
- Regular differentials and adjoint polynomials (jacobian, parametrization)

2 Quasi-optimal irreducibility test in $\mathbb{K}[[x]][y]$.

Ongoing research:

- Use approximate roots for factorization in K[[x]][y] (easier implementation and better practical behaviour)
- Generalization over local rings of arbitrary characteristic (try to improve the O^{*}(dδ²) of Guardia-Montes-Nart '08)
- Implementation.