Computing the genus of plane curves with cubic complexity in the degree

Adrien Poteaux* and Martin Weimann ${ }^{*}$

*: CRIStAL - University of Lille
${ }^{\prime}$: GAATI - University of French Polynesia

July 16-20, 2019

ACA, Montreal

1. Genus

Genus

Definition

The genus of an irreducible algebraic curve C is the dimension of the space of regular 1-forms on a smooth projective curve birational to C.

- Main birational invariant of curves
- Characterizes rational curves $(g=0)$
- Topology of Riemann surfaces ($g=$ number of handles)

$$
g=0
$$

$$
g=1
$$

$$
g=2
$$

- Abel-Jacobi map $C \rightarrow \mathbb{C}^{g} / \Lambda$
- Canonical embedding $C \rightarrow \mathbb{P}^{g-1}$
- Hasse-Weil bounds (rational points over finite fields)

Main result

- C a plane curve of degree d over a perfect field \mathbb{K} of characteristic zero or greater than \boldsymbol{d}.

Theorem (Poteaux-Weimann '18)

We can compute the genus of C with $\mathcal{O}^{\sim}\left(d^{3}\right)$ arithmetic operations over \mathbb{K}.

- Improves $\mathcal{O}^{\sim}\left(d^{7}\right)$ of Bauch'12 (all characteristic) and $\mathcal{O}^{(}\left(d^{5}\right)$ of Poteaux-Rybowicz '15.
- Case $\mathbb{K}=\mathbb{Q}$. Monte-Carlo algorithm with bit complexity $\mathcal{O}\left(d^{3} \log (h)\right)$.

Strategy

(1) Consider the completion $\mathcal{C} \subset \mathbb{P}^{1} \times \mathbb{P}^{1}$ and the finite morphism

$$
\begin{array}{rlll}
\pi: & \mathcal{C} & \rightarrow & \mathbb{P}^{1} \\
(x, y) & \mapsto & x
\end{array}
$$

(2) For all critical places $q \in \mathbb{P}^{1}$ and all places $p \in \mathcal{C}$ above q, compute :

- Index of ramification e_{p}
- Residual degree f_{p}
(3) Apply the Riemann-Hurwitz formula

$$
g=1-d_{y}+\frac{1}{2} \sum_{q} \operatorname{deg}(q) \sum_{p \mid q} f_{p}\left(e_{p}-1\right)
$$

- Main task : step 2

$$
F(x, y)=y^{2}-x(x-1)(x+1)
$$

$$
F(x, y)=y^{2}-x(x-1)^{2}
$$

2. A fast algorithm of Newton-Puiseux type

Rational Puiseux Expansions (above 0)

Bijective correspondence between :

- Places p_{1}, \ldots, p_{ρ} of \mathcal{C} above 0 .
- Irreducible factors $F_{1}, \ldots F_{\rho}$ of F in $\mathbb{K}[[x]][y]$.
- Rational Puiseux expansions R_{1}, \ldots, R_{ρ} of F above 0 :

$$
R_{i}(T)=\left(\mu_{i} T^{e_{i}}, S_{i}(T)\right) \in \mathbb{K}_{i}((T))^{2}
$$

with e_{i} the index of ramification and $f_{i}=\left[\mathbb{K}_{i}: \mathbb{K}\right]$ the residual degree.

Remark

The set $\left(e_{i}, f_{i}\right)_{i=1, \ldots, \rho}$ depends only on the singular parts of the RPE's (suitable truncation).

Fast computation of Puiseux expansions

Denote $\delta=\operatorname{val}_{x}\left(\operatorname{Res}_{y}\left(F, F_{y}\right)\right)$.

Theorem (Poteaux-Weimann '18)
Singular parts of all RPE's above 0 within $\mathcal{O}^{\sim}\left(\delta d_{y}\right)$.

Corollary

Singular parts of all RPE's above all critical places within $\mathcal{O}\left(d^{3}\right)$.

Proof of Corollary:

(1) Critical places identify with prime factors q of $R=\operatorname{Res}_{y}\left(F, F_{y}\right)$ (special care at infinity).
(2) Apply previous theorem above each q. Sum over q gives $\mathcal{O}\left(\operatorname{deg}(R) d_{y}\right) \subset \mathcal{O}^{\sim}\left(d^{3}\right)$.
(3) Do not factorize R (too costly)! Use square-free factors and rely on dynamic evaluation.

Definition

(1) The Newton polygon $\mathcal{N}(F)$ is the lower convex hull of the set of exponents of F.
(2) To each edge $\Delta \in \mathcal{N}(F)$ is attached a characteristic polynomial $\Phi_{\Delta} \in \mathbb{K}[z]$.

$$
F(x, y)=x^{9}-y^{6} x^{6}-2 y^{11} x^{5}+y^{15} x^{5}+y^{8} x^{4}+\mathbf{y}^{11}-4 \mathbf{y}^{7} \mathbf{x}^{2}+4 \mathbf{y}^{3} \mathbf{x}^{4}
$$

$$
F_{\mid \Delta}=\mathbf{y}^{11}-4 \mathbf{y}^{7} \mathbf{x}^{2}+4 \mathbf{y}^{3} \mathbf{x}^{4}=y^{3} x^{4} \underbrace{\left(\left(\frac{y^{2}}{x}\right)^{4}-4\left(\frac{y^{2}}{x}\right)^{2}+4\right)}_{\Phi_{\Delta}(\mathbf{z})=\mathbf{z}^{4}-4 \mathbf{z}^{2}+\mathbf{4}=(\mathbf{z}-\mathbf{2})^{2}}
$$

Algorithm (Poteaux-Rybowic '15, variant of Duval '89)

For each edge $\Delta=(q, m)$ of $\mathcal{N}(F)$ and each prime factor ϕ of Φ_{Δ} :
(1) $G \leftarrow F\left(\alpha x^{q}, x^{m}(y+\beta)\right)$ for some $\alpha, \beta \in \mathbb{K}[z] /(\phi(z))$
(Puiseux transform)
(2) $H \leftarrow$ Weierstrass polynomial of G
(Hensel lifting)
(3) $F \leftarrow H(x, y-c)$, with $c=\operatorname{coeff}\left(H, y^{d} H^{-1}\right) / d_{H}$
(Abhyankhar's trick)

4 Update the involved RPE
If $F=y$: singular part is computed.
Else : recursive call on F
(Primitive elements)

- $\rho \log (\delta)$ recursive calls
- Sharp truncation bounds
- Dynamic evaluation
- Primitive elements

$$
\} \quad \Longrightarrow \quad \text { Complexity } \mathcal{O}^{\sim}\left(\mathrm{d}^{2} \delta\right)
$$

Divide and conquer

Proposition

- Truncation mod x^{δ} allows to compute all RPE's.
- Truncation mod $x^{2 \delta / d y}$ allows to compute at least half of the RPE's.

Algorithm (Poteaux-Weimann '18)

(1) Use previous algo with precision $2 \delta / d_{y}$ to compute at least half of the RPEs of F.
(2) Let G be the corresponding factor of F. Compute $F=G H \bmod x^{2 \delta / d y}$.
(8) Compute $F=G H \bmod x^{\delta}$ (generalized Hensel's lifting).
(4) Recursive call on $H \bmod x^{\delta}$.

$$
d_{y}(H) \leq d_{y} / 2 \Longrightarrow \mathcal{O}\left(\log \left(d_{y}\right)\right) \text { recursive calls } \quad \Longrightarrow \text { Complexity } \mathcal{O}^{\sim}\left(\delta d_{y}\right)!
$$

Fast factorization in $\mathbb{K}[[x]][y]$

- Suppose that $F \in \mathbb{K}[[x]][y]$ has irreducible factors $F_{1}, \ldots, F_{\rho} \in \mathbb{K}[[x]][y]$.

Theorem (Poteaux-Weimann '18)
Let $n \in \mathbb{N}$. We can compute the F_{i} 's modulo x^{n} within $\mathcal{O}^{\prime}\left(d_{y}(\delta+n)\right)$.

- Proof : Fast computation of RPE's and generalized multifactor hensel lifting.
- Application : Fast factorization in $\mathbb{K}[x, y]$ by recombination of the F_{i} 's (Weimann '17)

Corollary

Irreducibility test in $\mathbb{K}[[x]][y]$ within $\mathcal{O}^{\sim}\left(d_{y} \delta\right)$.

- Faster irreducibility test ? Hopeless using Newton-Puiseux type algorithm...

Faster irreducibility test

VS

Theorem (Poteaux-Weimann '19)

Irreducibility test in $\mathbb{K}[[x]][y]$ with complexity $\mathcal{O}(\delta)$.

- Algorithm quasi-linear in the size of the input
- Computes also the equisingularity class of the germ $(F, 0)$
- Generalizes Abhyankhar's criterion: uses approximate roots.

Proposition (Abhyankhar '89)

Assume F monic and let N dividing d_{y}. There exists a unique monic polynomial $\psi \in \mathbb{K}[[x]][y]$ such that F has ψ-adic expansion

$$
F=\psi^{N}+a_{N-2} \psi^{N-2}+a_{N-3} \psi^{N-3}+\cdots+a_{0}
$$

We call ψ the $N^{t h}$-approximate root of F.

Algorithm (Poteaux-Weimann '19)
(1) $N \leftarrow d_{y}$
(2) While $N>1$:
(1) $\psi \leftarrow N^{t h}$-approximate root
(2) Compute the ψ-adic Newton polygon. If not straight: Return False
(3) Compute the ψ-adic characteristic polynomial. If not prime power : Return False
(4) $N \leftarrow N / q \operatorname{deg}(\phi) \quad(q \operatorname{deg}(\phi) \geq 2)$
(3) Return True.

Computations $\bmod x^{2 \delta / d_{y}} \quad \Longrightarrow \quad$ Total cost $: \mathcal{O}^{\sim}(\delta)$!
3. Last slide...

(1) Fast computation of RPE's with various applications:

- Desingularization of plane curves (genus, equisingularity classes, etc.)
- Factorization in $\mathbb{K}[[x]][y]$ and $\mathbb{K}[x, y]$
- Integral basis of function fields (Van Hoeij algorithm)
- Regular differentials and adjoint polynomials (jacobian, parametrization)
(2) Quasi-optimal irreducibility test in $\mathbb{K}[[x]][y]$.
(3) Ongoing research:
- Use approximate roots for factorization in $\mathbb{K}[[x]][y]$ (easier implementation and better practical behaviour)
- Generalization over local rings of arbitrary characteristic (try to improve the $\mathcal{O}^{\sim}\left(d \delta^{2}\right)$ of Guardia-Montes-Nart '08)
- Implementation.

