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Abstract. — We extend the usual projective Abel-Radon transform to the larger
context of a smooth complete toric variety X. We define and study toric E-concavity
attached to a split vector bundle on X. Then we obtain a multidimensional residual
representation of the toric Abel-transform and we prove a toric version of the classical
Abel-inverse theorem.

Résumé. — Nous étendons la transformée d’Abel-Radon projective au cadre plus
large d’une variété torique lisse complète X. Pour ce faire, nous définissons et étudions
dans un premier temps la notion de E-concavité torique attachée à un fibré vectoriel
scindé E sur X. Finalement, nous définissons la transformée d’Abel torique et nous
prouvons une version torique du théorème d’Abel-inverse à l’aide du calcul résiduel
multivarié.
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1. Introduction

Abel-tranform’s philosophy was introduced by Abel in its pionneer article on in-
tegrals of rational forms on algebraic curves. He considered sums of such integrals
depending on 0-cycles given by the intersection of the given curve V with a ratio-
nal family of algebraic curves (Ca)a∈A and made the fundamental discovery that such
sums can be expressed in terms of rational and logarithmic functions of the parameter
a.
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If we suppose that V is a curve in P2 and Ca are lines of P2 (so that A = (P2)∗),
then Abel’s theorem can be rephrased as follow. Consider the incidence variety IV =
{(x, a) ∈ V × (P2)∗, x ∈ Ca} over V and its associated diagram

IV

p ↙ ↘ q

V (P2)∗

where p and q are the natural projections.

Abel’s Theorem. — For any rational 1-form φ on V , the current q∗p∗φ coincides
with a rational 1-form on (P2)∗.

The original proof of Abel deals with more general curves than lines. We state it
for lines for simplicity, since the proof is immediate in both cases with the modern
language of currents.

The map T 7→ q∗p∗T on currents is well-defined since p is a submersion and q

is proper. This is the so called Abel-transform. On the Zariski open set of (P2)∗

consisting of elements a for which the intersection V · Ca is transversal and does not
meet the polar locus of φ, the current q∗p∗φ is holomorphic, equal to the trace form

TrV φ(a) :=
∑

p∈V ∩Ca

φ(p).

Abel’s theorem gave new perspectives as well in complex analysis as in algebraic ge-
ometry and number theory. In particular, studying analytic sets in the complex pro-
jective space X = Pn using scanning by linear subspaces of complementary dimension
gave rise to an intense activity around inversion problems by several mathematiciens,
as Lie, St-Donnat [25], Wirtinger, Darboux, Griffiths [17], Henkin [20, 21], Passare
[22]. Let us explain the so-called Abel-inverse Theorem obtained by Saint-Donat
([25], 1975) and Henkin ([20], 1992) for n = 2.

We consider U ⊂ P2 an open neighborhood of a line Cα ⊂ P2 and V ⊂ U an
analytic curve transversal to Cα. For U small enough, we can define as before the
trace of any holomorphic 1-form φ on V , which is a holomorphic 1-form TrV φ on the
open set U

′ ⊂ (P2)∗ of lines included in U .

Abel-inverse Theorem. — Let N be the cardinality of V ∩Cα. The analytic curve
V is contained in an algebraic curve Ṽ ⊂ P2 of degree N and φ extends to a rational
(resp. regular) form φ̃ on Ṽ if and only if the form TrV φ is rational (resp. vanishes)
on (P2)∗.

Let us insist on the important contributions of Griffiths ([17], 1976) who introduced
Grothendieck residues in the picture and of Henkin ([21], 1995) who introduced the
notion of Abel-Radon transform. Latter on, Henkin and Passare ([22], 1999) es-
tablished the link with multidimensional residue theory, in particular the modern
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formalism of residue currents, and proved in [22] a stronger local version of the Abel-
inverse theorem which holds for any dimension and for analytic subset V ⊂ U ⊂ Pn

of any pure dimension k in an open neighborhood U of a (n − k)-linear subspace,
and for φ a meromorphic k-form on V . Finally, Fabre generalized in his thesis [11]
the Abel-inverse theorem to the more general situation of complete intersections with
fixed multi-degree replacing linear subspaces.

Our main goal here is to give a toric version of the Abel-inverse theorem, where a
smooth complete toric variety X replaces Pn, and zero locus of sections of a globally
generated split vector bundle E = L1⊕· · ·⊕Lk on X replaces linear subspaces. This
article has been motivated by the previously mentionned result of Fabre and by results
of [29], where the author relates the inversion mechanisms to a rigidity propriety of
a certain system of PDE’s to give finally a stronger form of the classical Abel-inverse
theorem.

When n ≥ 3, most of complete toric varieties are not projective, so that we can not
a priori deduce the toric Abel-inverse theorem (theorem 4.1) from the classical one
[22] when X = Pn. Thus, our proof does not rely on a projective embedding of X and
follows the one given in [29]. Moreover, recent results of [2, 26, 27] suggest that there
are canonical kernels for residue currents in complete toric varietiesX who replaces the
classical Cauchy or Bochner-Martinelli kernels. This is an other important motivation
for an intrinsec approach of Abel-tranform in toric varieties (even projective ones),
especially in view of effectivity aspects in Abel-inverse problems.

Let us describe the content of the article.

Section 2. We define and study the notion of toric concavity attached to the bundle
E on the toric variety X. In analogy with the projective case, an open set U of X
(for the usual topology) is said to be E-concave if any x in U belongs to a subscheme
C = {s = 0}, s ∈ Γ(X,E) included in U . Contrarly to the projective case, the toric
context brings us to study which bundles E give rise to families of subvarieties which
can move “sufficiently” in X, that his bundles E for which there exist non trivial
E-concave open sets in X.

The main theorem of that section concerns the set theoretical orbital decomposition
of such subschemes, called E-subscheme.

Theorem 2.2. — A generical E-subscheme can be uniquely decomposed as the cycle

C =
∑

νI,τCI,τ , νI,τ ∈ {0, 1}
where τ runs over the cones of the fan Σ of X, I runs over the subsets of {1, . . . , k} and
the CI,τ are smooth |I|-codimensional subvarieties of the toric subvariety V (τ) ⊂ X

attached to τ , with transversal or empty intersection with all orbits closures included
in V (τ).

The integers νI,τ ∈ {0, 1} are explicitly determined from geometry of polytopes.
If E is globally generated, they are all zero except possibly for I = {1, . . . , k} and
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τ = {0} (so that V (τ) = X). We state precisely and prove theorem 2.2 in section 2.2,
after some reminders on toric geometry in section 2.1.

We introduce E-concavity in section 2.3. Let

X
′
= X

′
(E) := P(Γ(X,L1))× · · · × P(Γ(X,Lk))

be the parameter space corresponding to E = L1 ⊕ · · · ⊕ Lk. Any a ∈ X
′

naturaly
defines a closed E-subscheme Ca ⊂ X. We deduce from theorem 2.2 that the E-dual
set

U
′
:= {a ∈ X ′

, Ca ⊂ U}
of an E-concave open set U is open in X

′
if and only if the bundle E is globally gen-

erated, and the family (L1, . . . , Lk) satisfies an additional combinatorial condition on
the involved polytopes, called condition of essentiality. We show that these conditions
are equivalent to that the projections pU and qU of the incidence variety

IU = {(x, a) ∈ X ×X
′
, x ∈ Ca}

on U and U
′
are respectively a submersion and a submersion over a Zariski open set

RegU
′ ⊂ U

′
. This is the reasonnable situation to generalize the usual Abel-transform,

as explained in [11].
We study in section 2.4 the E-dual set

V
′
:= {a ∈ U ′

, Ca ∩ V 6= ∅}
of an analytic subset V of an open E-concave subset U of X. Contrarly to the
projective space where we profit that the Picard group is simply Z, there are in
the toric context pathologic situations of analytic subsets whose intersection with
E-subschemes is never proper. We characterize those degenerated subsets in the
algebraic case U = X. Finally, we extend E-duality to the case of cycles and, using
resultant theory, we compute the multidegree (in the product of projective space X

′
)

of the divisor E-dual to a (k − 1)-cycle of X.

Remark 1.1. — Linear concavity and convexity play an important role in complex
analysis when studying varying transforms as Abel, Radon, Abel-Radon or Fantappié-
Martineau transforms (see [3, 21] for instance). In that spirit, recent results [26, 27]
suggest that concavity in smooth complete toric varieties as developed here should
simplify the description of various transforms, using some global intrinsec integral
representation for residue currents [2], whose kernel is canonically associated to X

and E.

Section 3. We generalize the Abel-transform to the toric context and we prove the
toric version of the Abel-inverse theorem, using the Cauchy residual representation of
the Abel-transform.

After reminders in section 3.1 about meromorphic and regular forms on analytic
sets, we define in section 3.2 the toric Abel-transform attached to an essential globally
generated vector bundle E = L1 ⊕ · · · ⊕ Lk. For any closed analytic subset V of
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an E-concave set U ⊂ X, we can multiply the current of integration [V ] with any
meromorphic q-form φ on V . The Abel-transform of the resulting current [V ] ∧ φ is
the current on U

′
defined by

A([V ] ∧ φ) := qU∗p∗U ([V ] ∧ φ)

where p∗U ([V ]∧φ) := [p−1
U (V )]∧p∗Uφ. If V is smooth and k-dimensional with transver-

sal intersection

V ∩ Ca = {p1(a), . . . , pN (a)}
for a in U

′
, and if φ is a global section of the sheaf Ωq

V of holomorphic q-forms on
V , the current A([V ] ∧ φ) is a ∂̄-closed (q, 0)-current on U

′
which coincides with the

q-holomorphic form

TrV φ(a) :=
N∑

j=1

p∗j (φ)(a),

called the trace of φ on V according to E. If V is singular and φ is meromorphic, the
current representation of the trace implies easily, as in the projective case [22], that
the q-form TrV φ originally defined and holomorphic on a dense open subset of U

′

extends to a q-meromorphic form on U
′
. Moreover, the map φ 7→ TrV φ commutes

with the operators d, ∂ and ∂̄ and thus induces a morphism on the corresponding
graded complex vector spaces.

In section 3.3, we give, as in [29], a residual representation of the form TrV φ,
using Grothendieck residues and Cauchy integrals depending meromorphically of the
parameter a. As mentioned before, it should be interesting to obtain an intrinsec
integral representation of the current TrV φ using a global kernel constructed from
the toric variety X and the bundle E (see [2, 26] for such motivations).

Finally, we show in section 4 the toric version of the Abel-inverse theorem in the
hypersurface case, under its algebraic strongest form stated in [29]. We assume that
E = L1 ⊕ · · · ⊕ Ln−1 is an essential globally generated bundle which satisfies the
following additional condition : there exists an affine chart Uσ ' Cn of X associated
to a maximal cone σ of the fan Σ, such that for any n−1-dimensional cone τ ⊂ σ, one
has dimH0(V (τ), Li|V (τ)) ≥ 2 for i = 1, . . . , n−1, where V (τ) is the one dimensional
toric subvariety of X associated to τ . There always exists such a bundle E on X,
even if X is not projective.

Theorem 4.1. — Let V ⊂ U be a codimension 1 analytic subset of a connected E-
concave open set U ⊂ X with no components in the hypersurface at infinity X \ Uσ.
Let φ be a meromorphic (n− 1)-form on V not identically zero on any component of
V . Then there exists an hypersurface Ṽ ⊂ X such that Ṽ|U = V and a rational form
φ̃ on Ṽ such that φ̃|V = φ if and only if the meromorphic form TrV φ is rational in
the constant coefficients a0 = (a1,0, . . . , an−1,0) of the n − 1 polynomial equations of
Ca in the affine chart U0.
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Let us mention that this theorem is intimely linked to the toric interpolation result
in [28], where φ is replaced by some rational function on X.

2. Toric concavity

2.1. Preleminaries on toric geometry. — We refer to [9], [10] and [13] for basic
references on toric geometry.

2.1.1. Basic notions. — Let X be an n-dimensional smooth complete toric variety
associated to a complete regular fan Σ in Rn. We note T := (C∗)n the algebraic
torus contained in X equipped with its canonical coordinates t = (t1 . . . , tn). For
m = (m1, . . . ,mn) ∈ Zn, we denote by tm the Laurent monomial tm1

1 · · · tmn
n . We

note OX the structure sheaf and C(X) the field of rational functions on X.
The set of irreducible k-codimensional subvarieties of X invariant under the torus

action (called T-subvarieties) is in one-to-one correspondence with the set Σ(k) of
cones of dimension k in Σ. For a cone τ in Σ, we note V (τ) the corresponding
subvariety, τ(r) the set of r-dimensional cones of Σ included in τ and

τ̌ := {m ∈ Zn, 〈m, ηρ〉 ≥ 0 ∀ρ ∈ τ(1)}
the dual cone of τ , where ηρ ∈ Zn is the unique primitive vector of the monoid ρ∩Zn

and 〈·, ·〉 denotes the usual scalar product in Rn. If σ is a cone of maximal dimension
n, the corresponding affine toric variety Uσ := SpecC[σ̌ ∩ Zn] is isomorphic to Cn.
The compact toric variety X is obtained by gluing together the affine charts Uσ and
Uσ′ along their common open set Uσ∩σ′ . The associated transition maps are given by
monomial applications induced by the change of basis from σ̌ ∩ Zn to σ̌′ ∩ Zn. If the
monoid σ̌ ∩ Zn admits (m1(σ), . . . ,mn(σ)) as a Z-basis, we note

xσ = (x1,σ, . . . , xn,σ) := (tm1(σ), . . . , tmn(σ))

the associated canonical system of affine coordinates in the chart Uσ corresponding
bijectively to the one-dimensional cones ρ1, . . . , ρn included in σ. We note

φσ : Rn → Rn

the isomorphism which sends mi(σ) on the i-th vector ei of the canonical basis of Rn

such that ei corresponds to xi,σ. If τ ∈ σ(k) is generated by {ρ1, . . . , ρk}, the toric
variety V (τ) intersected with the affine chart Uσ corresponds to the coordinate linear
subspace

V (τ)|Uσ
= {x1,σ = · · · = xk,σ = 0}.

The variety X has the set theoretical representation

X = T ∪
⋃

ρ∈Σ(1)

Dρ,
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where the Dρ’s are the irreducible T-divisors attached to the one-dimensional cones
(the rays) of Σ. Any T-divisor D on X,

D =
∑

ρ∈Σ(1)

kρDρ, kρ ∈ Z,

is a Cartier divisor with local data (Uσ, t
sσ,D )σ∈Σ(n) where the vectors sσ,D ∈ Zn are

uniquely determined by the n equalities

〈sσ,D, ηρ〉 = kρ ∀ρ ∈ σ(1).

It is well known [13] that the vector space Γ(X,L(D)) of global sections of the line
bundle L(D) attached to D is isomorphic to the vector space of Laurent polynomials
supported in the convex integer polytope

PD = {m ∈ Rn, 〈m, ηρ〉+ kρ ≥ 0 ∀ρ ∈ σ(1)}.
Such a Laurent polynomial f =

∑
m∈PD∩Zn cmt

m defines a global section of L(D)
given in the affine chart Uσ by the polynomial

fσ ∈ C[x1,σ, . . . , xn,σ]

expressing the Laurent polynomial t−sσ,Df (which belongs to C[σ̌ ∩ Zn] by assump-
tion) in the affine coordinates xσ. The polynomial fσ is supported in the polytope
∆D,σ (contained in (R+)n), image of the translated polytope PD − sσ,D under the
isomorphism φσ defined before.

The complete linear system |L(D)| of effective divisors rationally equivalent to D
is isomorphic to the projective space P(Γ(X,L(D))) ' Pl(D)−1 where l(D) is the
cardinality of PD ∩ Zn.

2.1.2. Globally generated line bundles. — We refer to [30] for this part. Any effective
T-divisorD =

∑
ρ∈Σ(1) kρDρ onX can be uniquely decomposed in a sumD = D′+D′′

of a “mobile” divisor D′ corresponding to a globally generated line bundle and a
“fixed” effective divisor D′′. That means that the zero divisor of any section s ∈
Γ(X,L(D)) satisfies

div0s = div0s
′ +D′′,

where s′ ∈ Γ(X,L(D′)). The mobile divisor D′ is equal to

D′ =
∑

ρ∈Σ(1)

k′ρDρ

where k′ρ := −minm∈PE
〈m, ηρ〉. Note that 0 ≤ k′ρ ≤ kρ so that D′′ = D − D′ is

effective.
For any cone τ ∈ Σ, we consider the two convex polytopes

P τ
D := {m ∈ PE , 〈m, ηρ〉 = −k′ρ ∀ρ ∈ τ(1)} and

P
(τ)
D := {m ∈ PE , 〈m, ηρ〉 = −kρ ∀ρ ∈ τ(1)}.
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We call P τ
D the face of PD associated to τ and P (τ)

D the virtual face of PD associated
to τ , since it can be empty [10]. The T-subvariety V (τ) is included in the base locus

BS(L(D)) := {x ∈ X, s(x) = 0 ∀s ∈ Γ(X,L(D))}
of the linear system |L(D)| if and only if the associated virtual face P (τ)

D is empty. In
particular, considering τ = σ ∈ Σ(n) (for which V (σ) is the fixed point corresponding
to the origin of the chart Uσ), we remark that the line bundle L(D) is globally
generated if and only if the vectors sσ,D belong to PD (that is 0 ∈ ∆D,σ) for all
σ ∈ Σ(n). That means that in any affine chart, the polynomial equation of a generic
divisor H ∈ |L(D)| has a non zero constant term.

If the line bundle L(D) is globally generated, it restricts for any τ ∈ Σ to a globally
generated line bundle L(D)τ on V (τ), whose polytope can be naturally identified with
the polytope P τ

D, equal to P (τ)
D in that case.

2.2. The orbital decomposition theorem. — Let L1, . . . , Lk be a family of
line bundles on X attached to a collection of effective T-divisors D1, . . . , Dk, with
polytopes P1 = PD1 , . . . , Pk = PDk

defined as before. We note E = L1 ⊕ · · · ⊕Lk the
associated rank k vector bundle. We say that a subscheme C ⊂ X is an E-subscheme
if it is the zero set of a global section of E.

This section deals with the generic structure of an E-subschemes, where generically
means for s in a Zariski open set of the vector space Γ(X,E).

We use the following definition introduced in [24] for k = n:

Definition 2.1. — A family (P1, . . . , Pr) of polytopes in Rn is called essential if for
any subset I of {1, . . . , r}, the dimension of the Minkowski sum

∑
i∈I Pi is at least

the cardinality |I| of I. The bundle E (or the family L1, . . . , Lk) is called essential if
the associated family of polytopes is.

Let us state the orbital decomposition theorem, using notations from section 2.1.

Theorem 2.2. — A generic E-subscheme can be uniquely decomposed as the cycle

C =
∑

I ⊂ {1, . . . , k}
τ ∈ Σ

νI,τCI,τ

where the CI,τ are smooth subvarieties, complete intersection of codimension |I| in
V (τ), with transversal or empty intersection with orbits included in V (τ), and the
integers νI,τ ∈ {0, 1} are defined by:

νI,τ =





1 if





∀i /∈ I, P (τ)
i = ∅

∀τ ′ ⊂ τ, ∃i /∈ I, P (τ ′)
i 6= ∅ and

the family (P τ
i )i∈I is essential

0 otherwise.
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The main ingredient of the proof is the following proposition and its corollary,
consequence of Sard’s theorem:

Proposition 2.3. — If E is globally generated, a generic E-subscheme is a smooth
complete intersection if and only if E is essential, and is empty otherwise.

Proof. — For s = (s1, . . . , sk) ∈ Γ(X,E), and σ ∈ Σ(n), we have

{s = 0} ∩ Uσ = {fσ
1 = · · · = fσ

k = 0}
where the polynomials fσ

i ∈ C[xσ
1 , . . . , x

σ
n] are supported by the convex polytopes

∆Di,σ associated to the divisor Di. Clearly, the family (P1, . . . , Pk) is essential if
and only if the family (∆D1,σ, . . . ,∆Dk,σ) is. This is equivalent to that each polytope
∆Di,σ contains a vector ei of the canonical basis of Rn such that the family (e1, . . . , ek)
is free. This implies that the differential form dfσ

1 ∧ · · · ∧ dfσ
k is generically non zero,

since it contains a non zero summand of the form gσdxσ
1 ∧· · ·∧dxσ

k , gσ 6= 0. Since the
Li are globally generated, the polytopes ∆Di,σ contain the origin. Thus, the Zariski
closure in X of the affine set define by the polynomials fσ

1 − ε1, . . . , f
σ
k − εk remains

an E-subscheme which is, by Sard’s theorem, a smooth complete intersection in X

for generic εi, i = 1, . . . , k. If E is not essential, there is a subset I = {i1, . . . , ir} of
{1, . . . , k} for which the family {fσ

i1
, . . . , fσ

ir
} of r polynomials depends on strictly less

than r variables in any chart Uσ, so that C = {s = 0} is generically empty.

Remark 2.4. — In the essential globally generated case, E-subschemes are not nec-
essary generically irreducible, but are disjoint union of irreducible components. For
example, if E = OP1×P1(2, 0), a generic E-subscheme consists of two disjoint lines
{p1} × P1 and {p2} × P1.

Corollary 2.5. — Suppose that E is globally generated. For any τ ∈ Σ(r) and any
generic E-subscheme C, the intersection C ∩V (τ) is transversal and define a smooth
subvariety Cτ of X of codimension r + k if and only if the family P τ

1 , . . . , P
τ
k is

essential, and C ∩ V (τ) is empty otherwise.

Proof. — The line bundles L1, . . . , Lk restricted to V (τ) define k line bundles
Lτ

1 , . . . , L
τ
k, globally generated on the toric variety V (τ), with associated polytopes

P τ
1 , . . . , P

τ
k . We then apply proposition 2.3.

Proof of Theorem 2.2. — Any E-subscheme C = {s1 = · · · = sk = 0}, si ∈ Γ(X,Li),
i = 1, . . . , k can be written as

C =
⋂

i∈{1,...,k}

(
{s′i = 0} ∪BS(Li)

)
=

⋃

I⊂{1,...,k}

( ⋂

i∈I

{s′i = 0}
⋂

i/∈I

BS (Li)
)

where, as in section 2.2, {s′i = 0} is the mobile part of the divisor {si = 0}. A
T-subvariety V (τ) is included in the intersection of base locis

⋂
i/∈I BS (Li) if and

only if the virtual faces P (τ)
i are empty for all i /∈ I. Moreover, there are no bigger



10 MARTIN WEIMANN

T-subvarieties containing such a V (τ) and included in
⋂

i/∈I BS (Li) if and only if for

all τ ′ ⊂ τ , there exists i /∈ I such that the virtual face P (τ ′)
i is not empty.

Since the s′i are global sections of a globally generated line bundle L(D′i) (D′i is the
mobile part of the divisor Di), corollary 2.5 implies that

CI,τ := V (τ) ∩
⋂

i∈I

{s′i = 0}

is generically a smooth complete intersection of codimension |I| in V (τ) if the family
(P τ

i )i∈I is essential, empty otherwise. Again by corollary 2.5, CI,τ has a transversal
or empty intersection with all orbits included in V (τ).

Let us introduce Bernstein’s theorem [5] in the picture:

Proposition 2.6. — If E is globally generated and dimV (τ) = rank E = k, the
intersection number V (τ) · C for a generic E-subvariety C is positive, equal to the
k-dimensional mixed volume

V (τ) · C = MVk(P τ
1 , . . . , P

τ
k ).

Proof. — Choose σ ∈ Σ(n) containing τ , such that

V (τ) ∩ Uσ = {xk+1,σ = · · · = xn,σ = 0}
and let fσ

1 = · · · = fσ
k = 0 be affine equations of C ∩ Uσ. Since the line bundles

Lτ
i are globally generated on the toric variety V (τ), corollary 2.5 implies that the

intersection C ∩ V (τ) is generically finite, transversal to the orbits included in V (τ).
It is thus included in V (τ) ∩ Uσ and globally given by polynomials equations

C ∩ V (τ) = {fσ,τ
1 (xσ

1 , . . . , x
σ
k) = · · · = fσ,τ

k (xσ
1 , . . . , x

σ
k) = 0},

where fσ,τ
i (xσ

1 , . . . , x
σ
k) := fσ

i (xσ
1 , . . . , x

σ
k , 0, . . . , 0). The support ∆τ

i,σ of a generic
polynomial fσ,τ

i is the subset of (R+)k×0(R+)n−k , image of the polytope P τ
i under the

isomorphism φσ : Rn → Rn and has the same normalized volume. From Bernstein’s
theorem, we have

Card(C ∩ V (τ)) = MVk(∆τ
1,σ, . . . ,∆

τ
k,σ) = MVk(P τ

1 , . . . , P
τ
k ).

Since the intersection C∩V (τ) is supposed to be transversal, the intersection number
C · V (τ) is equal to Card(C ∩ V (τ)).

Since the classes of k-dimensional T-subvarieties generate the k-Chow group Ak(X)
of algebraic k-cycles of X modulo rational equivalence [13], the previous proposition
permits to compute the intersection number V · C of any k-dimensional closed sub-
variety V of X with a generic E-subscheme C.

Corollary 2.7. — The stricly positivity conditions V (τ) · L1 · · ·Lk > 0 are satisfied
for any τ ∈ Σ(n− k) if and only if the bundle E is globally generated, essential, and
if the line bundle L1 ⊗ · · · ⊗ Lk is very ample.
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Proof. — The k-dimensional mixed volume of a family of k polytopes in Rk is strictly
positive if and only if the family is essential (see [10]). Essentiality of the families
P τ

1 , . . . , P
τ
k for all τ ∈ Σ(n − k) is equivalent to that any face P τ of the Minkowski

sum P := P1 + · · · + Pk has maximal dimension k. In the globally generated case,
the polytope P = PD corresponds to the divisor D = D1 + · · ·+Dk. It satisfies the
previous condition if and only if the translated polytope PD− sσ,D contains the basis
of the Z-free module σ̌ ∩ Zn for all σ ∈ Σ(n). This holds if and only if the associated
line bundle L(D) = L1 ⊗ · · · ⊗ Lk is very ample, see [13].

A vector bundle E which satisfies hypothesis of corollary 2.7 is called very ample.
For instance, the bundle E = OP1×P1×P1(1, 0, 0)⊕OP1×P1×P1(0, 1, 1) is very ample on
X = P1 × P1 × P1.

We now use theorem 2.2 and proposition 2.3 to extend the classical notion of
(n− k)-concavity in the projective space to an intrinsic notion of E-concavity in the
smooth, complete toric variety X.

2.3. E-concavity. — We call the parameter space for E-subvarieties the product
of projective spaces

X
′
= X

′
(L1, . . . , Lk) := P(Γ(X,L1))× · · · × P(Γ(X,Lk)),

equipped with the multi-homogeneous coordinates a = (a1, . . . , ak), where

ai = (aim)m∈Pi∩Zn ∈ P(Γ(X,Li))

are the natural homogeneous coordinates for divisors in |Li|. Thus any a in X
′

determines the E-subvariety Ca whose restriction to the torus T ⊂ X has Laurent
polynomial equations

Ca ∩ T = {l1(a1, t) = · · · = lk(ak, t) = 0}.
where li(ai, t) =

∑
m∈Pi∩Zn aimt

m, for i = 1, . . . , k.

Definition 2.8. — An open set U of X is called E-concave if any point of U belongs
to an E-subvariety included in U . The E-dual space of an E-concave set U is the
subset

U
′
:= {a ∈ X ′

, Ca ⊂ U} ⊂ X
′
.

The E-incidence variety over U is the analytic subset of U × U
′

IU := {(x, a) ∈ U × U
′
, x ∈ Ca}

equipped with its natural projections pU and qU on respectively U and U
′
. We note

Reg(U
′
) the set of regular points a ∈ U

′
, for which the subvariety Ca is a smooth

complete intersection.
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Certainly, E-concave open sets need not exist without any restrictive hypothesis on
the algebraic vector bundle E. However, we know from section 2.2 that Reg(X

′
) is an

open Zariski subset in X
′

if E is globally generated and essential. Next proposition
shows that this condition is necessary and sufficient to be in the general situation
described in [11] to generalize the Abel-transform.

Proposition 2.9. — A. These three assertions are equivalents:

1. E is globally generated;
2. IX = IX(E) is a bundle on X in a product of projective spaces Pl1−2×· · ·×Plk−2,

where li = Card(Pi ∩ Zn), i = 1, . . . , k;
3. IX = IX(E) is a smooth irreducible complete intersection in X × X

′
and the

morphism pX : IX → X is a holomorphic submersion.

B. If E is globally generated, then Reg (X
′
) is a non empty Zariski open set of X

′

if and only if E is essential. In that case, the map qX : IX → X
′

is holomorphic,
proper, surjective and defines a submersion over Reg (X

′
). Moreover, the E-dual set

U
′
of an E-concave open set U ⊂ X is open, non empty, and connected if U is.

Proof. — We show part A. For i = 1, . . . , k, let Vi := Γ(X,Li) and V ∗i its dual. We
can define the tautological projective bundle “points-hyperplanes” over the projec-
tivised space P(V ∗i ) of Vi

Ti = {(P,H) ∈ P(Vi)× P(V ∗i ) ; P ∈ H}
where P(Vi) ' Pli−1. The product bundle T = T1×· · ·×Tk over P(V ∗1 )×· · ·×P(V ∗k )
is a bundle in a product of projectives spaces isomorphic to Pl1−2 × · · · × Plk−2. If
assertion (1) is true, the morphism

Φ = (ΦL1 , . . . ,ΦLk
) : X −→ P(V ∗1 )× · · · × P(V ∗k )

is well-defined, where, for i = 1 . . . , k, ΦLi is the Kodaira map which sends x to the
point in P(V ∗i ) representing the hyperplane in Vi of sections of Li vanishing at x.
The triple (IX , X, pX) is the pull-back bundle Φ∗(T ) on X which shows (1) ⇒ (2).
A projective bundle on a smooth irreducible variety X is smooth irreducible and the
projection on X is a submersion. The variety IX is locally given by k affine equations
and is thus a complete intersection for dimension reasons which shows (2) ⇒ (3). If a
line bundle Li is not globally generated, the fiber p−1

X (x) over any x in the base locus
BS(Li) 6= ∅ has codimension strictly less than k in {x} ×X

′
, contradicting (3). So

(3) ⇒ (1), which completes the proof of A.
Let us show part B. The map qX is holomorphic, proper (since X is compact)

and surjective by construction. Proposition 2.3 implies that Reg (X
′
) is a non empty

Zariski open set of X
′

if and only if E is essential. In that case, the fiber q−1
X (a) =

Ca×{a} over a ∈ Reg (X
′
) is smooth and the implicit function theorem implies that

in a neighborhood of (x, a) ∈ IX , the triple (IX , qX , X
′
) is diffeomorphic to the triple
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(Wx × Ua, q, Ua) where Wx is an open subset of Cn−k, Ua is an open neighborood of
a and q : Wx × Ua → Ua is the second projection.

It remains to show that U
′
is open in X

′
. Since pX : IX → X is a submersion, IU

is open in IX if and only if for all x in U , the fiber p−1
U (x) = p−1

X (x) ∩ IU is open in
p−1

X (x). Let F be the closed subset X \ U . We define for x ∈ U the set

Wx = {(z, a) ∈ F × qX(p−1
X (x)), z ∈ Ca} ⊂ p−1

X (x) ⊂ IX .

The set qX(p−1
X (x)), isomorphic to a product of projectives spaces, is closed in X

′
;

the condition z ∈ Ca is closed and the set Wx is therefore closed in p−1
X (x) ⊂ IX ;

each fiber p−1
U (x) = p−1

X (x) \Wx is hence open in p−1
X (x) and IU = p−1

U (U) is open
in p−1

X (U), so in IX . Since qX is holomorphic, it is open and the set U
′
= qX(IU ) is

open in X
′
. If U is connected, so is IU (because of its bundle structure), and so is

U
′
= qU (IU ) since qU is continuous.

2.4. E-duality. — From now on, we assume that E = L1⊕ · · · ⊕Lk is an essential
and globally generated vector bundle over X.

2.4.1. E-dual sets. — To any analytic subset V in an E-concave open set U of X,
we associate (set theoretically) its E-dual set

V
′
:= qU (p−1

U (V )) = {a ∈ U ′
, Ca ∩ V 6= ∅}.

We define the incidence set over V

IV := p−1
U (V ) = {(x, a) ∈ V × U

′
, x ∈ Ca}

and note pV and qV the natural projections onto V and V
′
.

Proposition 2.10. — If U is open E-concave, then

1. The dual V
′
of a closed analytic set V ⊂ U is closed analytic in U

′
. Moreover,

for any α ∈ V ′
, we have

codimα(V
′
) = k − r +min{dim(V ∩ Ca), a ∈ V ′

near α},
where r is the maximum of the dimensions of the irreducible components of V
meeting Cα.

2. If V is irreducible and if there exists a ∈ Reg (U
′
) such that the intersection

V ∩ Ca is proper, its dual V
′
is irreducible of pure codimension

codim(V
′
) =

{
k − dim(V ), if dim(V ) < k

0 otherwise.

Proof. — 1. Since pU is a submersion, IV is analytic closed in IU of codimension n−
dim(V ), irreducible if and only if V is. The projection qU : IU → U

′
is holomorphic,

proper and the proper mapping theorem [16] implies that V
′

= qU (IV ) is analytic
closed in U

′
, irreducible if IV is. Moreover, for any α ∈ V ′

:

dimα(V
′
) = max{dim(x,a)(qV ), (x, a) ∈ IV , a ∈ V

′
nearα}
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where dim(x,a)(qV ) := dim(x,a)(IV )− dim(x,a)(q−1
V (a)) is the codimension at (x, a) in

IV of the fiber q−1
V (a) = V ∩ Ca × {a}. On the other hand, since pU : IU → U is a

submersion, we have codimIU ,(x,a)(IV ) = codimU,x(V ) for any (x, a) in IV , so that

dim(x,a)(qV ) = dim(x,a)(IU )− codimU,x(V )− dimx(V ∩ Ca)

= n+ dim(X
′
)− k − (n− dimx(V ))− dimx(V ∩ Ca)

= dim(X
′
)− (k − dimx(V ) + dimx(V ∩ Ca)).

The maximum of the dimensions dimx(V ) for x ∈ V ∩ Ca when a runs an arbitrary
small open neighborhood Uα ⊂ U of α is the maximum of the dimensions of the
irreducible components of V meeting Cα, which only depends of α. Consequently, if
U∗α is small enough, the chosen definition of r implies the equality

dimα(V
′
) = dim(X

′
)− (k − r + min{dim(V ∩ Ca), a ∈ U∗α ∩ V

′}),
which ends the proof of the first point.

2. If Ca and V intersect properly for a ∈ Reg(U
′
), then

dim(V ∩ Ca) =

{
dim(V ) + dim(Ca)− n if dim(V ) ≥ k

0 if dim(V ) < k .

From the first point, we then have

codima (V
′
) =

{
k − dim(V ) + dim(V ) + dim(Ca)− n = 0 if dim(V ) ≥ k

k − dim(V ) if dim(V ) < k .

Since V is assumed irreducible, V
′
is irreducible, and codim(V

′
) = codima(V

′
) which

ends the proof.

We remark that E-dual sets have a particular structure: if V is closed analytic in
an E-concave open set U ⊂ X, its dual V

′
= ∪x∈V qU (p−1

U (x)) is a union of products
of projectives hyperplanes Pl1−2 × · · · × Plk−2 ⊂ X

′
restricted to U

′
.

The following example illustrates proposition 2.10:

Example 2.11. — Let X = P1 × P1 × P1, with natural multi-homogeneous coor-
dinates [x0 : x1], [y0 : y1], [z0 : z1]. Consider the essential globally generated bundle
E = OX(2, 0, 0). Then X

′
= X

′
(E) is isomorphic to P2 equipped with its nat-

ural homogeneous coordinates [a0 : a1 : a2], with the representation Ca = {p ∈
X ; a0x

2
0 +a1x

2
1 +a2x0x1 = 0}. For V = {x0 = 0}, the intersection Ca∩V is empty if

a1 6= 0 and Ca∩V = {0}×P1×P1 otherwise. Thus, V
′
= {a1 = 0} and the minimum

of the dimension of V ∩ Ca for a ∈ V
′

near any points [a0 : 0 : a2] ∈ V
′

is two and
codim[a0:0:a2](V

′
) = 1− 2 + 2 = 1 as predicted by proposition 2.10.

In this example, while dim(V ) + dim(Ca) = 4 > dim(X) = 3, the intersection
V ∩Ca is generically empty (which traduces the inequality codimX′ (V

′
) > 0). This is
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an example of a set for which the intersection with an E-subscheme is never proper,
situation excluded in the projective case X = Pn. Let us study those degenerate sets.

2.4.2. Degenerate analytic sets. — Let U be an E-concave open subset of X.

Definition 2.12. — An analytic subset V in U is called E-degenerate if it contains
an irreducible branch V0 such that

{
dim(V

′
0 ) < dim(IV0) if dim(V0) ≤ k

dim(V
′
0 ) < dim(U

′
) if dim(V0) > k.

Proposition 2.13. — Suppose that V ⊂ U is an irreducible analytic subset of di-
mension r ≤ k in U . The following assertions are equivalent:

1. The set V is not E-degenerate;
2. The equality codim(V

′
) = k − dim(V ) holds;

3. The analytic subset ΥV ′ := {a ∈ V
′
, dim(V ∩ Ca) ≥ 1} is of codimension at

least two in V
′
.

4. There exists a in Reg(U
′
) such that dim(V ∩ Ca) = 0.

Proof. — 1 ⇒ 2. The equality dim(IV ) = dim(V ) + dim(U
′
) − k and the inequality

dim(IV ) ≥ dim(V
′
) ensure that V is not E-degenerate if and only if dim(IV ) =

dim(V
′
), that is codim(V

′
) = k − dim(V ).

2 ⇒ 3. If dim(ΥV ′ (≥ dim(V
′
) − 1, then dim(q−1

V (ΥV ′ )) ≥ 1 + dim(V
′
) − 1. If V is

not E-degenerate, dim(V
′
) = dim(IV ) so that q−1

V (ΥV ′ ) = IV and V
′

= ΥV ′ by a
dimension argument since IV and V ′ are irreducible. Thus dim(V ∩ Ca) ≥ 1 for any
a in U

′
, contradicting 2 by assertion (1) of proposition 2.10.

3 ⇒ 4. For all x ∈ X, a generic E-subscheme containing x is a smooth complete
intersection. Thus, the open subset qU (p−1

U (V )) ∩ Reg(U
′
) is dense in V

′
and meets

V
′ \ΥV ′ under hypothesis 3.

4 ⇒ 1 is a consequence of the second point in proposition 2.10.

For r ≥ k, we obtain a similar caracterisation of E-degenerate set using the set
ΥV ′ := {a ∈ V ′

, dim(V ∩Ca) > r− k}. In particular, X is not E-degenerate and the
set ΥX′ ⊂ X

′
has codimension at least two.

If dim(V) = k, we note RegV (U
′
) the set of parameters a ∈ U

′
for which Ca

intersects V transversaly outside its singular locus Sing(V ).

Corollary 2.14. — Let V ⊂ U be irreducible of dimension k. The following asser-
tions are equivalent:

1. The set V is not E-degenerate;
2. The set RegV (U

′
) is nonempty;

3. The set RegV (U
′
) is dense in U

′
.
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Proof. — (3) ⇒ (2) is trivial. If a ∈ RegV (U
′
), then dim(V ∩Ca) = 0 and (2) ⇒ (1)

follows from proposition 2.13. Let us show (1) ⇒ (3). Since dim(Sing(V )) < k, then
dim(Sing(V ))

′
) < dimU

′
from proposition 2.10. But V

′
is irreducible of codimension

0 in the connected open set U
′
, so U

′
= V

′
. For a in U

′
generic, the intersection

V ∩ Ca is finite (X is compact) and does not meet Sing(V ). As in proposition 2.3,
Sard’s theorem implies that transversality TxX = TxCa ⊕ TxV is then generically
satisfied.

We can interpret corollary 2.14 in the algebraic case U = X.

Corollary 2.15. — An irreducible subvariety V of X of dimension k is E-degenerate
if and only if its class [V ] ∈ Ak(X) is orthogonal to L1 · · ·Lk, that is if the intersection
number [V ] · L1 · · ·Lk is zero. In particular, there are no E-degenerate algebraic
subvarieties if and only if E is very ample.

Proof. — This is immediate from proposition 2.13 and corollaries 2.7 and 2.14.

Thus, strict inequality [V ] · L1 · · ·Lk > 0 is equivalent to that for any E-concave
open set U in X, there exists a ∈ U ′

for which the intersection V ∩Ca is transversal,
consisting in [V ] · L1 · · ·Lk distinct points in U . In particular, any k-dimensional
closed subvariety which is not E-degenerate meets any E-concave open set.

Corollary 2.16. — If V ⊂ U is not E-degenerate and has pure dimension r ≤ k,
the morphism qV : IV −→ V

′
is a ramified covering over the open subset V

′ \ΥV ′ of
degree N = [C(IV ) : C(V

′
)].

Proof. — Clearly, the morphism qV restricts to a finite ramified covering of degree
N = [C(q−1

V (V
′ \ ΥV ′ )) : C(V

′ \ ΥV ′ )] over V
′ \ ΥV ′ . By Proposition 5, the codi-

mension of ΥV ′ in V
′
is at least two and C(V

′
) = C(V

′ \ΥV ′ ) by Hartog’s extension
theorem. Since qU is a proper submersion over the dense open set Reg(U

′
) ⊂ U

′
,

the codimension in q−1
U (V

′ ∩ Reg(U
′
)) of the analytic subset q−1

U (ΥV ′ ∩ Reg(U
′
)) is

at least two, and so is its analytic closure q−1
U (ΥV ′ ) in q−1

U (V
′
) = q−1

V (V
′
) = IV .

Consequently C(IV ) = C(q−1
V (V

′ \ΥV ′ )), which ends the proof.

If dim(V ) < k, a generic E-subscheme does not meet V and one is tempted to
think that the intersection V ∩Ca consists in one point for a generic a in V

′
(meaning

that the subvarieties IV and V
′
are bimeromorphically equivalent). This is generally

not true, as the following simple example shows :

Example 2.17. — Suppose X = P1 × P1 × P1 and let E be the essential globally
generated bundle OX((2, 0, 0), (0, 1, 0)). A generic E-subscheme Ca is the disjoint
union Ca = ({P1} × {P} × P1) ∪ ({P2} × {P} × P1) where the points P1 and P2 are
distinct and belong to the first factor P1 while the point P belongs to the second
factor P1. For V = P1 × {[0 : 1]} × {[0 : 1]} the set Ca ∩ V is generically empty.
However, for a in V

′
generic, the intersection V ∩Ca consists of two distincts points.
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To understand the behaviour of E-duality with rational equivalence, we need to
consider the case of cycles, taking now account of multiplicities.

2.4.3. E-duality for cycles. — Let U ⊂ X be an open E-concave subset and let V
be an irreducible analytic subset of U . We define the E-dual cycle V ∗ of V as follow.
If V is E-degenerate or dim(V ) > k, then V ∗ := 0. Otherwise, the field C(IV ) is a
finite extension on C(V

′
) and we set

V ∗ = [C(IV ) : C(V
′
)] · V ′

.

We extend by linearity this definition to the case of cycles. E-duality agrees with
rational equivalence:

Proposition 2.18. — A. Let l = dim(X
′
). The map V 7→ V ∗ induces a morphism

of graded Z-free modules on the Chow groups of X and X
′

Aj(X) → Al−k+j(X
′
)

for all j = 0, . . . , k.
B. Suppose that the line bundles L1, . . . , Lk are very ample and let W be an effective

(k−1)-cycle on X of class [W ] =
∑

τ∈Σ(n−k+1) ντ [V (τ)] in An−k+1(X). Then W ∗ is
an effective divisor in the product of projective spaces X

′
of multidegree (d1, · · · , dk) ∈

Zk, where

di =
∑

τ∈Σ(n−k+1)

ντMVk−1(P τ
1 , · · · , P̂ τ

i , · · · , P τ
k )

for all i = 1, . . . , k (we omit the i-th polytope).

Proof. — A. We have dim(V ∗) = dim(V ) + l− k by proposition 2.10. The map V 7→
V ∗ is the composed map of the usual pull-back map of cycles under the submersion
pU with the direct total image of cycles under the proper morphism qU . Thus, it is
compatible with rational equivalence (Appendix A of [19]).

B. Let RW be the multihomogeneous equation of the effective divisor W ∗ in the
product of projective spaces X

′
, with the convention that RW0 = 1 for irreducible

E-degenerate components W0 of W . We call this polynomial the E-resultant of W .
For τ ∈ Σ(n−k+1), the E-resultant RV (τ) corresponds to the classical (Lτ

1 , · · · , Lτ
k)-

resultant of the k very ample line bundles Lτ
1 , · · · , Lτ

k on the (k − 1)-dimensional
toric variety V (τ), as defined in [14]. If W is rationally equivalent to the cycle∑

τ∈Σ(n−k+1) ντV (τ), part A implies by linearity that

degai
RW =

∑

τ∈Σ(n−k+1)

ντdegai
Rτ

E .

From [14], the partial degree in ai of the polynomial RV (τ) is equal to the intersection
number of V (τ) with a generic Ei-subvariety where Ei := ⊕k

j=1,j 6=iLj . We conclude
with proposition 2.6.
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3. The toric Abel-transform

3.1. Meromorphic forms and residue currents. — Let X be an analytic mani-
fold of dimension n. Any k-dimensional analytic subset V ⊂ X gives rise to a positive
d-closed (k, k)-current [V ] on U , acting by integration on the regular part of V . We
define the sheaf of OX -modules Mq

V on X of germs of meromorphic q-forms on V

as the restriction to V of the sheaf of germs of meromorphic q-forms in the ambient
space X whose polar sets intersect properly V . We note Mq

V the corresponding vector
space of global sections. Note that the restriction map Mq

X −→Mq
V is in general not

surjective.
As shown in [22], any q-meromorphic form φ ∈Mq

V gives rise to a current [V ] ∧ φ
on U , supported on V and acting on any (k − q, k)-test-forms Ψ using the principal
value criterion:

〈[V ] ∧ φ,Ψ〉 := lim
ε→0

∫

V ∩{|g|>ε}
φ ∧Ψ

where g is any holomorphic function on U not identically zero on V but vanishing on
the singular locus of V and on the polar set of φ (the limit does not depend on the
choice of g). The polar locus of φ is the analytic subset

pol(φ) = {p ∈ X, ∂̄([V ] ∧ φ) 6= 0} ⊂ V.

By Hartog’s theorem, pol(φ) is either a codimension 1 analytic subset of V , either
the empty set.

A meromorphic form φ is called abelian or regular at x ∈ V if the current [V ] ∧ φ
is ∂̄-closed at x. We note ωq

V the corresponding sheaf of OX -modules. When V is
smooth, ωq

V is the usual sheaf Ωq
V of germs of holomorphic q-forms on the manifold

V .

3.2. The Abel-transform. — Let E = L1 ⊕ · · · ⊕ Lk be a globally generated
essential rank k split vector bundle on a smooth complete toric variety X = XΣ. We
keep the notations of section 2. Let U ⊂ X be an open E-concave set. We suppose
U connected for simplicity.

For any k-dimensional analytic subset V ⊂ U and any q-form φ ∈ Mq
V , the Toric

Abel-transform (relatively to E) of the locally residual current [V ] ∧ φ is the current
on U

′

A([V ] ∧ φ) := qU∗(p∗U ([V ] ∧ φ)),

where qU∗ is the push-forward map for currents associated to the proper morphism
qU and

p∗U ([V ] ∧ φ) := [IV ] ∧ p∗Uφ.
This current is well defined since pU is a holomorphic submersion by proposition 2.13,
so that p∗Uφ is meromorphic on IV .

If V is not E-degenerate, the intersection V ∩ Ca is generically transversal by
corollary 2.14 and consists in N points {p1(a), . . . , pN (a)} outside the polar locus of



CONCAVITY, ABEL-TRANSFORM AND THE ABEL-INVERSE THEOREM IN TORIC... 19

φ, whose coordinates vary holomorphically with a by the implicit function theorem.
For such generic a, the Abel-transform A([V ] ∧ φ) coincides with the holomorphic
q-form

TrV φ(a) =
N∑

i=1

p∗iφ.

We call it the Trace of φ on V (relatively to E).
Let us introduce residue calculus in the picture.

3.3. Residual representation of the Abel-transform. — For simplicity, we
suppose that V ⊂ U is an analytic hypersurface meeting properly the codimension
one orbits of X. The more general case of a locally complete intersection can be
treated in the same way. So E = L1 ⊕ · · · ⊕ Ln−1 is an essential globally generated
bundle of rank n − 1, where the line bundles Li are attached to Cartier divisors Di,
with polytopes Pi, for i = 1, . . . , n− 1.

Using the principle of unicity of analytic continuation, we can compute the trace
in a sufficiently small open set of U

′
(always noted U

′
) such that for every a ∈ U

′
,

the intersection V ∩Ca is contained in the torus (this is possible by proposition 2.13).
We can thus use the torus variables t = (t1, . . . , tn). We recall that

Ca ∩ T = {l1(a1, t) = · · · = ln−1(an−1, t) = 0}

where the Laurent polynomials li(ai, ·) are supported by the polytopes Pi, for i =
1, . . . , n− 1.

Proposition 3.1. — The coefficients of the meromorphic q-form TrV φ ∈ Mq(U
′
)

are Grothendieck residues of meromorphic n-forms (in t) depending meromorphically
of the parameters a ∈ U

′
. If f is the analytic equation of V near V ∩ Ca, a ∈ U

′
,

then

TrV φ =
∑

|I|=q

∑

M∈Qi∈I Pi

Res


 t|M |φ ∧ df ∧ ∧

j /∈I

dlj

f(t), l1(a1, t), . . . , ln−1(an−1, t)


 daM

where M = (mi1 , . . . ,miq ), |M | = mi1 + · · ·+miq , daM = ∧i∈Idaimi and

Res
[

tmφ ∧ df
f, l1, . . . , ln−1

]
:=

∑

p∈U

resp

( tmφ ∧ df
f · l1(a1, ·) · · · ln−1(an−1, ·)

)

denotes the action in U of the Grothendieck residues defined by the polynomials
(f, l1, . . . , ln−1) on the meromorphic n-form tmφ ∧ df (the residues are zero except
eventually on the finite set Ca ∩ V ).
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Proof. — The meromorphic form TrV φ = qU∗p∗U ([V ] ∧ φ) is a (q, 0)-current on U
′

which acts on test-forms ϕ by

〈TrV (φ) , ϕ〉 =
∫

U ′
TrV (φ)(a) ∧ ϕ(a)

=
∫

IU

([p−1
U (V )(a)] ∧ p∗U [Φ]) ∧ qU ∗(ϕ)(t, a)

=
∫

U×U ′
([V ](t) ∧ φ(t) ∧ [IU ](t, a)) ∧ ϕ(a).

For any complete intersection Z = {g1 = · · · = gk = 0} in a complex manifold, the
(k, k)-current of integration [Z] is attached to the (k, 0)-residue current

〈∂̄ 1
g1
∧ · · · ∧ ∂̄ 1

gk
,Ψ〉 :=

( 1
2iπ

)k lim
ε→0

∫

|g1|=ε1,...|gk|=εk

Ψ
g1 · · · gk

by the Poincaré-Lelong equation

[Z] = dg1 ∧ · · · ∧ dgk ∧ ∂̄ 1
g1
∧ · · · ∧ ∂̄ 1

gk
.

In our situation, this formula gives a local expression for the (2n − 1, n)-current
T := [V ] ∧ [IU ] ∧ φ on U × U

′

T = φ ∧ df ∧
( n−1∧

i=1

d(t,a)li

)
∧ ∂

[ 1
f

]
∧

( n−1∧

i=1

∂̄(t,a)

[ 1
li

])
.

Since the current TrV φ = qU∗T acts on test-forms of bidegree (l − q, l) in a, where
l = dim(X

′
), we have TrV φ = qU∗T ′, where

T ′ =
∑

I⊂{1,...,n−1},|I|=q

φ ∧ df ∧
( ∧

i/∈I

dtli

)
∧

( ∧

j∈I

daj lj

)
∧ ∂

[ 1
f

]
∧

( n−1∧

i=1

∂̄t

[ 1
li

])
.

Since

〈∂
[ 1
f

]
∧

( n−1∧

i=1

∂̄(t,a)

[ 1
li

])
, ψ〉 = Res

[
ψ

f, l1, . . . , ln−1

]

for any meromorphic n-form ψ, this gives the desired residual expression for the trace
using linearity of Grothendieck residues and expanding the form

∧
j∈I

dai li .

Remark 3.2. — In the algebraic case U = X, the previous residual representation
allows to compute explicitly the polar divisor for the toric Abel-transform using re-
sults in [15] and [8] who give denominators formulae for toric residues depending on
parameters (see [30] for the very ample case).

We are now in position to prove the Abel-inverse theorem in smooth complete toric
varieties.
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4. A toric version of the Abel-inverse theorem

Let E = L1⊕· · ·⊕Ln−1 be an essential globally generated vector bundle on X with
polytopes P1, . . . , Pn−1 defined as before. We suppose that E satisfies the following
additional condition :

There exists a chart Uσ, σ ∈ Σ(n) such that each polytope ∆i,σ i = 1, . . . , n−1 defined
in section 2.1 contains the elementary simplex of Rn. (∗)
Condition (∗) means that dimH0(V (τ), Li|V (τ)) ≥ 2, i = 1, . . . , n − 1 for any n − 1-
dimensional cone τ ⊂ σ. There always exist bundles E who satisy (∗). Geometrically,
it means that a generic hypersurface H ∈ |Li| meets any one dimensional orbit closure
V (τ) meeting Uσ. Let U0 := Uσ be such a chart. We prove the following toric version
of the classical Abel-inverse theorem:

Theorem 4.1. — Let V be an analytic hypersurface of an E-concave open set U ⊂ X

with no components included in X \U0, and let φ be a meromorphic (n− 1)-form on
V which does not vanish identically on any component of V . Then, there exists an
algebraic hypersurface Ṽ ⊂ X and a rational form φ̃ on Ṽ such that

Ṽ|U = V and φ̃|V = φ

if and only if the meromorphic form TrV φ is rational in the constant coefficients
a0 = (a1,0, . . . , an−1,0) of the n− 1 polynomial equations of Ca in U0.

Remark 4.2. — The condition Ṽ|U = V is equivalent to that the intersection num-
ber Ṽ · L1 · · ·Ln−1 is equal to the cardinality N of the finite set V ∩Ca for a generic
a ∈ U ′

. From proposition 2.6, this is equivalent to that the intersection of the hyper-
surface Ṽ with the torus T is given by a Laurent polynomial whose Newton polytope
P satisfies MV (P, P1, . . . , Pn−1) = N . For the complete characterization of the class
of Ṽ in the Picard group Pic(X) (or, equivalently the polytope P of Ṽ ), we need
supplementary degree conditions in terms of traces of appropriate rational functions
on X (see [30]).

Proof. — Direct implication. Since Ṽ|U = V , then V ∩ Ca = Ṽ ∩ Ca for any a ∈ U ′

and the form TrV φ coincides on U
′
with the Abel-transform A([Ṽ ] ∧ φ̃). This (q, 0)-

current is defined on the product of projective spaces X
′
, and ∂̄-closed outside an

hypersurface dual to the polar locus of φ̃ on Ṽ . This current thus corresponds to a
meromorphic form on X

′
, which, by the GAGA principle, is rational in a (so in a0).

Converse implication. Under a monomial change of coordinates on the torus, we can
suppose that the affine coordinates x = (x1, . . . , xn) := (x1,σ, . . . , xn,σ) of U0 = Uσ

coincide with the torus coordinates t = (t1, . . . , tn) so that the polytopes ∆Di,σ coin-
cide with the polytopes Pi attached to the line bundle Li. Thus, every E-subvariety
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Ca has affine equations

Ca ∩ U0 = {l1(a1, x) = · · · = ln−1(an−1, x) = 0}
where the polynomials li(ai, ·) are supported by the polytopes Pi ⊂ (R+)n containing
the elementary simplex of Rn with a constant term ai0 for i = 1, . . . , n− 1.

By assumption, the sets V ∩ (X \ U0) and V ∩ pol(φ) have codimension at least 2
in U . Thus, we can suppose that U

′
is a neighborhood of a point α ∈ RegV (U

′
) such

that the intersection
V ∩ Ca = {p1(a), . . . , pN (a)}

is transversal, does not meet the polar locus of φ and is contained in U0 for all a ∈ U ′
.

So we suppose V smooth, included in U0, and φ holomorphic on V . In particular, we
can use affine coordinates (x1, . . . , xn) of the chart U0 to compute traces.

We now extend to the toric situation a lemma of “propagation”, crucial in the
original proof in [22].

4.1. The propagation principle. — We show here the following lemma.

Lemma 4.3. — If TrV φ is rational in ai0, then so is the form TrV hφ for every
polynomial h ∈ C[x1, . . . , xn] supported in the convex cone generated by Pi.

Proof. — We note f = 0 the equation of V in U (so that f is holomorphic near the
finite set {p1(α), . . . , pN (α)}) and we define

vm := Res
[

xmφ ∧ df
f, l1, . . . , ln−1

]

for every m ∈ Z. Proposition 3.1 applied with q = n− 1 implies the equality

TrV x
mφ =

∑

M∈P1×···×Pn−1

Res
[

x|M |+mφ ∧ df
f(x), l1(a1, x), . . . , ln−1(an−1, x)

]
daM

for all m ∈ Zn. Thus we need to show that the meromorphic functions vm on U
′
are

rational in ai0 for all m in P + kPi and all k ∈ N. For k = 0, this is our hypothesis
since the meromorphic functions vm are coefficients of the trace TrV φ. We suppose
vm′ rational in ai0 for m′ ∈ P + kPi and we show that vm+m′ is rational in ai0 for
every m ∈ Pi.

Using Cauchy integral representation for Grothendieck residues and Stokes theo-
rem, we see that for all m ∈ Pi and all m′ ∈ Nn, we have

∂aimvm′ = −Res
[

xm′
∂aim liφ ∧ df

f, l1, . . . , l
2
i , . . . , ln−1

]

= −Res
[

xm+m′
φ ∧ df

f, l1, . . . , l
2
i , . . . , ln−1

]
= ∂ai0vm+m′ .

This is also equivalent to that the form TrV x
mφ is closed on U

′
, since the form xmφ

is of maximal degree on V and the d-operator commutes with p∗U and qU∗.



CONCAVITY, ABEL-TRANSFORM AND THE ABEL-INVERSE THEOREM IN TORIC... 23

So, if m′ ∈ kPi, our hypothesis implies that ∂ai0vm+m′ is rational in ai0, and
we want to show that it has no simple pole in ai0 in its decomposition into simple
elements in ai0. If ∂ai0 [vm+m′ ] = 0, it’s trivially true. Otherwise, there exists c ∈ C∗
such that the functions vm′ and vm′ + c vm+m′ are C-linearly independent. Then:

∂ai0 [vm′ + cvm+m′ ] = ∂ai0 [vm′ ] + c ∂aim
[vm′ ] = ∂ai0+caim

[vm′ ]

so that the function ∂ai0 [vm′ + cvm+m′ ] (rational in ai0) admits the two linearly inde-
pendents primitives vm′ + cvm+m′ and vm′ in the two linearly independent directions
ai0 and ai0 + c aim. Thus it can not have simple poles in its decomposition in simple
elements in ai0 and the function vm′ +cvm+m′ is rational in ai0. Since vm′ is assumed
to be rational in ai0, so is vm+m′ .

Let us come back to the proof of theorem 4.1.

4.2. The inversion process. — We devide it in two steps.

Step 1. Extension of V . The finite degree-N field extension [C(IV ) : C(U
′
)] is

generated by the meromorphic functions x1, . . . , xn considered as elements of C(IV ).
Thus, for c = (c1, . . . , cn) ∈ Cn \ {0} generic, the meromorphic function defined by
y = c1x1 + · · ·+ cnxn on IV is a primitive element for this extension. We note yj(a)
the analytic functions y(pj(a)) for j = 1, . . . , N . The unitary polynomial of C(U

′
)[Y ]

P (a, Y ) := (Y − y1(a))× · · · × (Y − yN (a))

= Y N + σN−1(a)Y N−1 + . . .+ σ0(a),

has degree N and satisfies P (a, y)IV ≡ 0. It is thus the minimal (and the character-
istic) polynomial of y. Let us define the meromorphic function on U

′

wk := Res
[

ykφ ∧ df
f, l1, . . . , li, . . . , ln−1

]
,

and let us show that the matrix of traces

M :=




w0 . . . wN−1

w1 . . . wN

...
. . .

...
wN−1 . . . w2N−2




is invertible in C(U
′
). Since P (a, y) ∈ C(U × U

′
) vanishes identically on the reduced

set IV , then

Res
[

ykP (a, y)φ ∧ df
f, l1, . . . , li, . . . , ln−1

]
= 0

for any k ∈ N. Expanding this condition by linearity for k = 0, . . . , N − 1, we obtain

M




σ0

...
σN−1


 =




−wN

...
−w2N−1


 .
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Similary, any vector λ = (λ0, . . . , λN−1) ∈ (C(U
′
))N such that Mλt = 0 represents

the coefficients of a polynomial F = F (X, a) ∈ C(U
′
)[X] of degree N − 1 such that

Res
[

F (y, a)ykφ ∧ df
f(x), l1(a1, x), . . . , ln−1(an−1, x)

]
= 0, k = 0, . . . N − 1.(1)

Let m ∈ Nn. Since y defines a primitive element for the degree N extension [C(IV ) :
C(U

′
)], there exists a polynomial R(a, Y ) ∈ C(U

′
)[X] of degree at most N − 1 such

that xm
|IV

≡ R(a, y)|IV
. By linearity, this implies that the relation (2) still holds when

replacing the polynomial yk by any monomial xm. Thus, if φ∧df = h(x)dx1∧· · ·∧dxn,
then

F (y, a)h(x) ∈ (f(x), l1(a1, x), . . . , ln−1(an−1, x))

by the duality theorem. By assumption on φ, the holomorphic function g is not
identically zero on any components of V = {f = 0}, so that F (y, a) must vanish
identically on the incidence variety IV . By a degree argument, this forces F ≡ 0, so
that M is invertible in C(U

′
).

Since the line bundles Li satisfy (∗), we have R+Pi = (R+)n for every i = 1, . . . , n−
1 and lemma 4.3 implies that the meromorphic functions wk are rational in a0 for
every k ∈ N. Since M is invertible, the coefficients of P are thus rational in a0.
Trivially,

x ∈ Ca ∩ U0 ⇐⇒ ai0 = ai0 − li(ai, x) =: l′i(a
′
i, x), ∀i = 1, . . . , n− 1

where ai = (ai0, a
′
i). The function

Qc,a′(x) := P
(
l′1(a

′
1, x), a

′
1, . . . , l

′
n−1(a

′
n−1, x), a

′
n−1, c1x1 + · · ·+ cnxn

)

=
N∏

j=1

(
y − yj

(
l′1(a

′
1, x), a

′
1, . . . , l

′
n−1(a

′
n−1, x), a

′
n−1

))

is thus rational in x and defines an algebraic hypersurface

Vc,a′ := {x ∈ U0, Qc,a′(x) = 0}
which contains V for every a′ in a neighborhood of α′. For generic c ∈ Cn the sum
y =

∑n
1 cixi remains a primitive element for the extension [C(IV ) : C(U

′
)], and

previous construction gives a set

V0 :=
⋂

c generic,a′ near α′
Vc,a′

which is algebraic and contains V . By construction, if q ∈ V0 ∩ Ca for a ∈ U ′
, there

exists j ∈ {1, . . . , N} such that

c1x1(q) + · · ·+ cnxn(q) = c1x1(pj(a)) + · · ·+ cnxn(pj(a))

for c ∈ Cn generic. This implies that q ∈ {p1(a), . . . , pN (a)} so that

V0 ∩ Ca = V ∩ Ca for all a ∈ U ′
.
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Let Ṽ be the Zariski closure of V0 to X. If Ca meets Ṽ outside V for a ∈ U
′
, then

it would remain true in a neighborhood of a, contradicting proposition 2.10 since Ṽ
meets properly the hypersurface at infinity X \ U0. Thus

Ṽ ∩ Ca = V ∩ Ca for all a ∈ U ′
.

This shows that Ṽ|U = V ∪V ′ where V ′∩Ca = ∅ for all a ∈ U ′
. Since U is E-concave,

this forces V ′ to be empty and Ṽ|U = V .

Step 2. Extension of φ. By assumption on U
′
, φ is holomorphic on the smooth analytic

set V and can be identified with a holomorphic form in the ambient space. Thus,
there exists a holomorphic function h in a neighborhood of the finite set {p1, . . . , pN}
such that

φ ∧ df = h(x)dx1 ∧ · · · ∧ dxn.

Let y = c1x1 + · · · + cnxn be as before and consider the Lagrange interpolation
polynomial

H(a, Y ) :=
N∑

j=1

N∏

r=1,r 6=j

Y − yr(a)
yj(a)− yr(a)

h(pj(a))

= τN−1(a)Y N−1 + . . .+ τ1(a)Y + τ0(a).

The polynomial H(a, Y ) ∈ C(U
′
)[Y ] satisfies H(a, yj(a)) = h(pj(a)) for all j =

1, . . . , N and all a ∈ U ′
, that is

H(y, a)|IV
= p∗U (h)|IV

.(2)

Thus we have equality

Res
[

ykH(a, y)dx1 ∧ · · · ∧ dxn

f(x), l1(a1, x), . . . , ln−1(an−1, x)

]

= Res
[

ykφ ∧ df
f(x), l1(a1, x), . . . , ln−1(an−1, x)

]

for all k ∈ N. That means that the N -uple (τ0, . . . , τN−1) satisfies

tN−1τN−1 + · · · + t0τ0 = w0

...
. . .

...
...

t2N−2τN−1 + · · · + tN−1τ0 = wN−1,

(3)

where

tk := Res
[

ykdx1 ∧ · · · ∧ dxn

f(x), l1(a1, x), . . . , ln−1(an−1, x)

]
.

As before, the duality theorem implies that system (3) is Cramer. From Point 1, f
can be replaced by a polynomial f̃ ∈ C[x1, . . . , xn] for which V0 = {f̃ = 0}. Thus,
the functions tk are rational in a (so in a0) for every k ∈ N while the functions
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wk are rational by hypothesis. So H(a, Y ) depends rationally on a0 and for any
a = (a0, a

′) ∈ U ′
, the function

g(a′, x) := H
(
l′1(a

′
1, x), a

′
1, . . . , l

′
n−1(a

′
n−1, x), a

′
n−1, c1x1 + · · ·+ cnxn

)

is rational in x. From (2) it satisfies g(a′, x)|IV
= p∗U (h)|IV

, so that the rational
function h̃a′(x) := g(a′, x) coincides with h on V independently of a′. The inner
product of the rational n-form h̃a′dx1 ∧ · · · ∧ dxn with df̃ defines a rational form φ̃a′

on X which satisfies φ̃a′|V = φ. If the polar locus of φ̃a′ does not meet properly
the algebraic hypersurface Ṽ , this also holds in the E-concave set U , contradicting
that φ ∈ Mn−1

V . Thus φ̃a′ defines a rational form φ̃ on Ṽ which is equal to φ on V .
Theorem 4.1 is proved.
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