
Bivariate factorization using a critical fiber

Martin Weimann
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Abstract

We generalize the classical lifting and recombination scheme for rational and absolute factor-
ization of bivariate polynomials to the case of a critical fiber. We explore different strategies
for recombinations of the analytic factors, depending on the complexity of the ramification. We
show that working along a critical fiber leads in some cases to a good theoretical complexity,
due to the smaller number of analytic factors to recombine. We pay a particular attention to
the case of polynomials that are non degenerate with respect to their P -adic Newton polytopes.
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1. Introduction

Factorization of bivariate polynomials is a central topic of Computer Algebra for which
many algorithms have been proposed, see for instance the surveys [17, 18] and the detailed
introduction in [9]. Maybe the most successful method is the lifting and recombination
scheme: given F ∈ K[x, y] a bivariate polynomial of bi-degree (dx, dy) over a field K, and
assuming separability with respect to y, we compute the factors of F in K[[x]][y] with
a suitable precision and we recombine these analytic factors to recover the polynomial
factors of F . Up to our knowledge, this approach led to the best theoretical complexity for
factoring dense bivariate polynomials, see [24, 26, 5]. However, it has only been developed
in the case when the fiber x = 0 is regular, that is when F (0, y) is separable of degree
dy. In this article, we generalize it to the case of a critical (non regular) fiber, both for
rational and absolute factorization issues. A first motivation for this work is that for fields
with few elements, a regular fiber might not exist. Although working in a well chosen field
extension can solve this problem [15], this might have a significant practical overhead
[3]. A second motivation is that a critical fiber brings new combinatorial constraints
that might speed up the recombination process. In particular, the number of absolute
analytic factors to recombine necessarily decreases along a critical fiber, due do the
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presence of ramification. Our main result is the existence of a deterministic algorithm

that, given the analytic factors of F up to a certain precision m, returns the rational

factors of F in small polynomial time in the total degree. While the regular case requires

a precision m = dx+ 1 [26], polynomials with high x-valuation of the discriminant might

need a higher precision for solving recombinations with linear algebra. However, we show

that in positive characteristic, the precision dx + 1 is always enough to compute the

numbers of rational factors and that in zero characteristic the precision 2dx is enough

to test irreducibility. Moreover, we exhibit different combinatorial tricks that allow to

solve recombinations with precision dx + 1 in many reasonable situations (Subsection

4.4). The algorithms we develop here are not intended to compete in general with actual

implementations, but we illustrate on some examples that working along a critical fiber

improves the complexity at least in some particular cases, especially for polynomials

that are non degenerate or locally irreducible along the fiber. The strength of our results

depends strongly on the complexity of analytic factorization, an issue we have not studied

here.

Main result. The prime divisors of F in the rings K[[x]][y] and K[x, y] are respectively

called analytic and rational factors. The n-truncated analytic factorization of F is the

data of the residues modulo xn+1 of the irreducible analytic factors of F . Although it is

a fundamental step of our algorithm, we do not pay attention here to the analytic factor-

ization and we introduce the notation C(n, dy) for the number of arithmetic operations

over K required for computing the n-truncated analytic factorization of a polynomial

F ∈ K[x, y] of degree dy in y. When x = 0 is a regular fiber, it’s well known that

C(n, dy) ⊂ Õ(ndy) thanks to the multi-factor Hensel lifting [16]. We use here the clas-

sical Õ notation in order to hide logarithmic factors in cost estimates [16, Ch. 25.7]. In

general, analytic factorization is more tricky and C(n, dy) is expected to be closely related

to the complexity of Puiseux series computation.

Our main hypothesis on F is the following:

(H) F is separable with respect to y.

We can always reduce to hypothesis (H) after applying a separable factorization algo-

rithm. For fields with at least dx(2dy + 1) elements, the cost of computing separable

factorization is Õ(dxd
2
y) by Proposition 8 in [25]. This is negligible when compared to

all complexity results we obtain here. Hence, hypothesis (H) might be restrictive for us

only for fields with few elements.

We denote by:

• p the characteristic of K.

• s the number of irreducible analytic factors of F in K(x)[y]. We thus have s ≤ dy.

• q = bv/dc the integer part of the quotient of the x-adic valuation v of the y-discriminant

of F with the minimal degree d of the analytic factors. This complexity indicator q

will be refined in terms of the resultants and the discriminants of the analytic factors

(see Section 3).

• ω the universal matrix multiplication exponent: multiplication of two n × n matrices

costs O(nω) operations in the base ring. It’s well known that 2 ≤ ω ≤ 2.5 [16].
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We refer the reader to Gathen and Gerhard’s book [16] for elementary algorithms

with polynomials (we recall the complexity of the main basic operations in Section 6).

In all of the sequel, we assume that fast multiplication of polynomials is used. Hence two

polynomials in K[y] of degrees at most d can be multiplied in softly linear time Õ(d) [16,

Theorem 8.23].

Theorem 1. Let m := max(q, dx+1). There exists a deterministic algorithm that, given

F ∈ K[x, y] satisfying hypothesis (H), returns its irreducible rational factorization with

at most

- O(mdys
ω−1) + C(m, dy) arithmetic operations over K if p = 0 or p > dx(2dy − 1);

- O(kmdys
ω−1) +O(k)C(m, dy) arithmetic operations over Fp if K = Fpk .

We have q ∈ O(dxdy) under hypothesis (H) and q can reach this order of magnitude

(Section 3, Example 2.2). If the fiber is regular, then q = 0 in which case our algorithm

specializes to that of Lecerf [26], with a complexity O(dxd
ω
y ). For fields with at least

2dy− 3 elements, we can always find a fiber over which q ≤ dx + 1, see Remark 3.7. Over

such a fiber, we get a complexity O(dxd
ω
y ) + C(dx, dy). The only difference with Lecerf’s

algorithm is that we need to compute the truncated analytic factorization along a critical

fiber, a difficulty that is compensated by an expected smaller number s of analytic factors

to recombine. It’s an open question to know if C(dx, dy) ⊂ O(dxd
ω
y ). An important case

is that of non degenerate polynomials, for which all edge polynomials of F (x, y−α) have

simple roots for all α ∈ P1
K̄. In that case, q ≤ dx and s is strictly smaller to the total

number of lattice points of all edges (see Section 8 for details). In such a case, the analytic

factorization reduces after some well chosen monomial change of variables to the classical

Hensel lifting or Newton iteration strategies. A brute force complexity analysis leads in

that case to C(dx, dy) ⊂ O(sdxd
2
y) but we strongly believe that this result is not optimal.

Example. Suppose given two co-prime positive numbers a and b and a field K of charac-

teristic zero or greater or equal to 2a+ b. Let

F (x, y) = (ya + xb + yaxb)(xayb + 1)((y − 1)a + xb + xb(y − 1)a) ∈ K[x, y].

Then the curve C ⊂ P1 × P1 defined by F intersects the line x = 0 exactly at the

points (0, 0), (0, 1), (0,∞). The Newton diagrams of F at each of the three points are

constituted of a unique segment with only two lattice points. Hence, F is necessarily non

degenerate and locally irreducible at each point. In particular, the analytic factors are

co-prime modulo x, and the Hensel lifting strategy leads to C(dx, dy) = O(dxdy). Hence,

the all rational factorization requires O(ab) = O(dxdy) operations over K which has to

be compared to the classical complexity bounds inherent to the choice of a regular fiber,

namely O(dxdys
ω−1) with s the number of rational places over a regular fiber [26]. Of

course, the two complexities will be close as soon as s is small. The difference will be

more remarkable in the absolute case for which a regular fiber imposes s = dy (see here

after). In that example, we solve recombinations in the absolute case within O(dxdy)

arithmetic operations over K, while working over a regular fiber would lead to O(dxd
ω
y )

operations over K [9].
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Locally irreducible polynomials. This example motivates to introduce an important class

of polynomials for which our approach leads to a good complexity. We say that F is

locally irreducible along the line x = 0 (resp. absolutely locally irreducible) if the germs

of curves (C,P ) ⊂ (P2
K, P ) defined by F are irreducible over K (resp. over K̄) at each

rational place P of the line x = 0, including the place at infinity. For example, F is always

locally irreducible along a regular fiber. The previous example is also such a polynomial.

Theorem 2. There exists a deterministic algorithm that, given F ∈ K[x, y] absolutely

locally irreducible along x = 0, returns its irreducible rational factorization with one

factorization in K[y] of degree at most dy plus

- O(dxdys
ω−1) arithmetic operations over K if p = 0 or p > dx(2dy − 1).

- O(kdxdys
ω−1) arithmetic operations over Fp if K = Fpk and p > dy.

In the second case, it’s enough to suppose that F is locally irreducible over K.

Theorem 2 is not a direct application of Theorem 1 since we can have F locally

irreducible with q ≈ dxdy. This is for instance the case when the projective curve defined

by F is a rational curve with a unique place along x = 0 and smooth outside this place.

If F is non degenerate, checking local irreducibility has a negligible cost (Section 8). In

general, this is more tricky. However, it has to be noticed that Abhyankar developed in [1]

an algorithm for testing local irreducibility of a germ of curve that do not require blowing-

ups or fractional power series (see also [10] for a generalization to positive characteristic).

The main ingredient is that of approximate roots and the algorithm uses almost only

resultant computations. Up to our knowledge, no complexity analysis have been done

yet.

Counting factors and testing irreducibility. If we rather pay attention to the number of

factors, it turns out that we need a lower truncation order (O(dx) for fields of positive

characteristic), leading to a better complexity. We say that K is an absolute field of F

if it contains the field of definition of the irreducible absolute factors of F , that is, if

rational and absolute factorizations coincide (as in the previous example).

Theorem 3. (1) Suppose that p = 0. Then we can test irreducibility of a polynomial

F ∈ K[x, y] satisfying hypothesis (H) with one factorization in K[y] of degree at

most dy plus

O(dxdys
ω−1) + C(2dx, dy)

arithmetic operations over K.

(2) Suppose that p > 0 or that K is an absolute field of F . We can compute the number

of rational factors of F ∈ K[x, y] satisfying hypothesis (H) with one factorization

in K[y] of degree at most dy plus

- O(dxdys
ω−1) + C(dx, dy) operations over K if p = 0 or p > dx(2dy − 1).

- O(kdxdys
ω−1) +O(k)C(dx, dy) operations over Fp if K = Fpk .

Note that we need not to suppose that K is an absolute field of F in the case of

positive characteristic, leading in that case to a much stronger result. Roughly speaking,

the underlying reason is that the Frobenius gives an efficient test for that an algebraic

number in K̄ lies in the sub-field K (Section 5).
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Absolute factorization. Finally, we apply our results to the problem of absolute factor-

ization, that is factorization over K̄. Note that rational factorization can be seen as a

subroutine of absolute factorization. Given F ∈ K[x, y] separable with respect to y, we

represent the absolute factorization of F as a family of pairs

{(P1, q1), . . . , (Pt, qt)}

where qj ∈ K[z] is separable, Pj ∈ K[x, y, z] satisfies degz Pj < deg qj , the bi-degree of

Pj(x, y, φ) is constant when φ runs over the roots of qj and

F (x, y) =

t∏
j=1

∏
qj(φ)=0

Pj(x, y, φ) ∈ K̄[x, y]

is the irreducible factorization of F in K̄[x, y]. This representation is not unique. We

have that t is smaller or equal to the number r of irreducible rational factors, with

equality if and only if the qj ’s are irreducible. In analogy to the rational case, we denote

by r̄ =
∑

deg qj the number of irreducible absolute factors of F . We represent the

absolute analytic factorization of F in K̄[[x]][y] exactly in the same way, the ring K[x]

being replaced by K[[x]] (Section 7). We denote by s̄ the number of irreducible analytic

absolute factors of F , and we introduce C̄(n, dy) for the complexity of computing the

n-truncated absolute analytic factorization of F .

Theorem 4. Suppose that p = 0 or p > dx(2dy − 1) and let m := max(q, dx + 1). There

exists a deterministic algorithm that, given F ∈ K[x, y] satisfying hypothesis (H), returns

its absolute factorization with at most

O(mdy s̄
ω−1 + r̄dxd

2
y) + C̄(m, dy) ⊂ O(dxd

ω+1
y ) + C̄(dxdy, dy)

arithmetic operations over K. We can take m = dx if F is locally absolutely irreducible

along the fiber x = 0.

This result has to be compared to [9], Proposition 12, where the authors get complexity

O(dω+1 + r̄dxd
2
y) for absolute factorization, where d is the total degree of F . Note that

in contrast to Theorem 1, we assume here that K has cardinality greater or equal to

dx(2dy − 1). If we only pay attention to the number of absolutely irreducible factors, we

can avoid this hypothesis and we can deal with the only (dx + 1)-truncation order.

Theorem 5. There exists a deterministic algorithm that, given F ∈ K[x, y] satisfying

hypothesis (H), returns the number r̄ of irreducible absolute factors of F with at most

- O(dxdy s̄
ω−1) + C(dx, dy) operations over K if p = 0 or p > dx(2dy − 1).

- O(kdxdy s̄
ω−1) +O(k)C(dx, dy) operations over Fp if K = Fpk .

This result has to be compared to [9], Proposition 12, where the authors get complexity

O(dω+1) for computing the number of irreducible absolute factors. As mentioned already,

the great advantage of our algorithm is that, when working over a regular fiber, the

number of absolute analytic factors to recombine is always dy, while working over critical

fibers reduces this number to s̄ ≤ dy. More precisely, if ei and fi stand respectively for
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the ramification indices and residue degrees of the s rational places of C over K, the
difference between s̄ and dy is measured by the formulas

s̄ =

r∑
i=1

fi ≤ dy =

r∑
i=1

eifi.

Hence, the more ramified the fiber is, the more we gain during the recombination step.
Of course, in counterpart, we have to perform analytic factorization along a critical fiber.

Example. Here is a very simple illustrating example. Suppose for instance that

F = (ya +
√

2xb + xbya)(ya −
√

2xb + xbya)

for some co-prime integers a, b. Then, the curve F = 0 has only one rational place over
x = 0, with ramification index e = a and residual degree f = 2. Moreover, F is non
degenerate with respect to its Newton polytope. It follows in particular that m = dx+ 1.
After some monomial change of coordinates, we can apply an absolute Hensel lifting
strategy which leads to C̄(dx) ⊂ O(dxdy). Since both s̄ and r̄ are constant, it follows
from Theorem 4 and 5 that we compute the number of absolute factors and the absolute
factorization of F with respective complexities O(dxdy) and O(dxd

2
y), which have to be

compared to the complexities O(dxd
ω
y ) inherent to the choice of a regular fiber [9]. For

instance, taking x = 1 leads to F (1, y) = 4y2a − 2. This polynomial is separable, and
the algorithm in [9] would have lift the factors of F (1, y) up to precision dx + 1 and
then recombine them, leading to the complexity O(dxd

ω
y ). Note moreover that the strong

sparsness of F would have been broken after the change of variable x→ x+1. Of course,
this is a very special example. In general, it would be interesting to know both in practice
and in theory which approach is the best one.

Main line of the proofs. The approach we propose to solve the problem of recombina-
tions of analytic factors follows closely that of Lecerf [26]. Namely, we use logarithmic
derivatives in order to reduce a multiplicative recombination problem to an additive re-
combination problem. Then, a simple observation shows that we need to test if some
rational function G/F has all its residues ρk’s in the sub-field K̄ ⊂ K(x), a problem that
can be reduced to a divisibility test by F for zero or big enough characteristic. Note that
in contrast to [26], we do not make any assumption on the cardinality of the field so that
we need to take care to the case when the leading coefficient of F is not invertible in
K[[x]]. For small positive characteristic, we test x-independence of the residues thanks
to an Fp-linear operator introduced by Niederreiter for univariate factorization [27] and
extended to the bivariate case by Lecerf [26]. Hence, linear algebra over Fp appears,
explaining that our complexity results are expressed only for finite fields when the char-
acteristic is small. When the fiber is regular, residues in K̄ turn out to be a sufficient
condition for solving recombinations. Along a critical fiber, this is not the case any more.
The basic idea is to introduce extra linear equations that depend on the higher truncated
analytic factors. To this aim, we introduce the separability order of F which in the monic
case, coincides with the maximal x-valuation of ∂yF (x, φ) when φ runs over the roots
of F . We show that this integer gives an upper bound for the required precision. If we
know moreover that the residues of G/F lie in the sub-field K ⊂ K̄, we show that we can
improve this upper bound. This is the kind of arguments that allows us to prove (2) in
Theorem 3. Finally, we extend our results to the absolute case by using a Vandermonde
matrix that allows to reduce K̄-linear algebra to K-linear algebra.
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Organization of the paper. In Section 2, we introduce our main notations and we explain
the recombination problem. In Section 3, we solve the recombination problem along a
critical fiber. In Section 4, we pay attention to the subproblem of counting the number of
factors and we give in particular an irreducibility test. We discuss moreover some com-
binatorial approaches for solving recombinations of some so-called reasonably ramified
polynomials. In Section 5, we give explicit equations for constant residues, mainly fol-
lowing [26]. In Section 6, we develop the algorithms underlying Theorem 1 and 3 and we
study their complexities. We consider the case of locally irreducible polynomials and we
prove Theorem 2 in Subsection 6.3. In Section 7, we pay attention to absolute factoriza-
tion and we prove theorems 4 and 5. In Section 8, we consider the case of non degenerate
polynomials with respect to their P -adic Newton polytopes. We conclude in Section 9.

2. Factorization, recombinations, residues.

We explain here the strategy developed by Lecerf in [26] for solving recombinations in
the regular case, and we show that some problems occur when working along a critical
fiber. For convenience to the reader, we tried to follow the notations of [26]. In all of this
section, we suppose that F is primitive with respect to y, a situation that can be reached
with a negligible cost for our purpose. For convenience, we only pay attention to rational
factorization, the absolute case being treated separately in Section 7.

2.1. The recombination problem

We normalize F by requiring that its leading coefficient with respect to y has its
first non zero coefficient equal to 1. The polynomial F thus admits a unique rational
factorization

F = F1 · · ·Fr ∈ K[x, y], (1)

where each Fj ∈ K[x, y] is irreducible, with leading coefficient with first non zero coeffi-
cient equal to 1. Also, F admits a unique analytic factorization of the form

F = uF1 · · · Fs ∈ K[[x]][y] (2)

where the Fi ∈ K[[x]][y] are irreducible with leading coefficient xni , ni ∈ N and u ∈ K[x],
u(0) 6= 0. Hence, each rational factor Fj has a unique normalized factorization

Fj = cjF
vj1
1 · · · Fvjrr , j = 1, . . . , r. (3)

for some polynomial cj ∈ K[x], cj(0) = 1. The recombination problem consists to compute
the exponent vectors

vj = (vj1, . . . , vjr) ∈ Nr
for all j = 1, . . . , r. Then, the computation of the Fj ’s follows easily. Since F is separable
by hypothesis, the vectors vj form a partition of (1, . . . , 1) of length r. In particular, they
form up to reordering the reduced echelon basis of the vector subspace they generate
over any given field F. In positive characteristic, our algorithm will have to solve linear
equations both over K and over Fp. Hence, in order to unify our notations, we consider
for a while the recombination problem over F a fixed given sub-field of K. Namely, we
want to compute a basis of the following F-vector space

S := 〈v1, . . . , vr〉F ⊂ Fs.
Hence, solving recombinations essentially reduces to finding a system of F-linear equations
that determine S ⊂ Fs. If not specified, all vector spaces we introduce from now are
defined over F, keeping in mind that F will have to play the role of K or Fp.
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Truncated functions. Given G ∈ K[[x]][y], we denote by [G]n ∈ K[x, y] the canonical
representative of G modulo (xn). We call it the n-truncation of G. We will use also the
notation

[G]n := G − [G]n and [G]mn := [G]m − [G]n

for lower truncation of functions, with convention that [G]mn = 0 for n ≥ m. In other
words, we put to zero all coefficients of monomials with x-degree < n.

2.2. Recombination and residues.

The key point to solve recombinations is to reduce a multiplicative problem to a
linear algebra problem thanks to the logarithmic derivative operator. Let F̂i stands for
the quotient of F by Fi. Let µ = (µ1, . . . , µs) ∈ Fs. Applying logarithmic derivative with
respect to y to (3) and multiplying by F we get the key characterization

µ ∈ S ⇐⇒ ∃α1, . . . , αr ∈ F |
s∑
i=1

µiF̂i∂yFi =

r∑
j=1

αjF̂j∂yFj . (4)

The reverse implication holds thanks to the separability assumption on F ([26], Lemma
1). The key idea is to derive from (4) a system of linear equations for S that depends
only on the (dx + 1)-truncated polynomial

Gµ :=

s∑
i=1

µi
[
F̂i∂yFi

]dx+1 ∈ K[x, y].

Let G = Gµ and let us denote by ρk = ρk(µ) the residues

ρk :=
G(x, yk)

∂yF (x, yk)
∈ K(x), k = 1, . . . , dy

of G/F at the roots yk ∈ K(x) of F . These residues are well defined thanks to the
separability assumption on F . We get from (4) that

µ ∈ S =⇒ ρk ∈ F ∀ k = 1, . . . , dy. (5)

In particular, we have an inclusion of F-vector spaces

S ⊂ V (L) :=
{
µ ∈ Fs | ρk ∈ L, k = 1, . . . , dy

}
for any sub-field L ⊂ K(x). In the regular case, the reverse inclusion holds as soon as
L ⊂ K̄, thanks to the following proposition ([26], Lemma 2).

Proposition 2.1. Suppose that F (0, y) is separable of degree dy. Then S = V (K̄).

In characteristic zero or high enough, we get that µ ∈ S if and only if ρ′k = 0 for all
k, a condition that can be translated into a finite number of linear equations over K. In
small positive characteristic p, we have that ρ′k = 0 implies that ρk ∈ K(xp) and we use
then the Niederreiter operator in order to get some extra Fp-linear equations that allow
to test ρk ∈ K̄ (see Section 3).

Unfortunately, the equality S = V (K̄) in Proposition 2.1 no longer holds along a
critical fiber, as illustrated by the following example.
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Example 2.2. Let F = y6 − (y − x)2 ∈ Q[x, y]. We see that F (0, y) has a double root
so that the fiber x = 0 is critical. We compute that F has s = 5 irreducible analytic
factors over Q and r = 2 rational factors. Two of the analytic factors of F have x-adic
expansions

F1 = y − x− x3 + · · · , F2 = y − x+ x3 + · · ·
Since dx = 2, it follows that

[F̂1∂yF1]dx+1 = [F̂2∂yF2]dx+1.

In particular, the vector µ = (1,−1, 0, 0, 0) ∈ F5 gives the zero polynomial Gµ = 0, hence
the trivial relation µ ∈ V (Q̄). We can check that µ /∈ S so that Proposition 2.1 doesn’t
hold in that case.

This example suggests to quotient V (K̄) by the vector subspace Z of relations Gµ = 0.
Unfortunately, we could not prove that the isomorphism S ' V (K̄)/Z always hold,
although this is the kind of approach we will follow in order to compute the number of
irreducible factors (Subsection 4.1). Moreover, even if such an isomorphism holds, it does
not allow in general to compute the reduced echelon basis of S thanks to linear algebra
(see Subsection 4.4). Hence, we rather prefer to reduce recombinations to linear algebra.
To do so, we need to introduce extra equations for S. Not surprisingly, these equations
will depend now on the analytic factors of F truncated up to some higher precision, this
precision being closely related to the valuation of the discriminant.

3. Recombinations along a critical fiber

In Subsection 3.1, we introduce the notion of separability order of F . This integer will
measure how much the fiber x = 0 is critical for F and will play the role of an upper
bound for the truncation order of the analytic factors. In Subsection 3.2, we solve the
recombination problem along a critical fiber. We keep the same notations and hypothesis
as in the previous section. In particular, F is primitive with respect to y.

3.1. The separability order

To each analytic factor Fi of F , we associate the integers

ri := valx Resy(Fi, F̂i), δi := valx Discy(Fi), di := degy(Fi).

Here, Resy and Discy stand for the usual resultants and discriminants with respect to y,
and valx stands for the x-adic valuation of K[[x]]. We introduce the rational number

qi :=
ri + δi
di

and we denote by N = N(F ) the integer:

N := max
{
bq1c, . . . , bqrc

}
.

The integer N measures in some sense how critical the fiber x = 0 is for the curve F = 0.
We call it the separability order of F along the fiber x = 0. In particular, we have N = 0
if F (0, y) is separable of degree dy (the converse is false, take for instance F = y2 − x).
The integer N will play the role of an upper bound for the truncation order that allows
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to solve recombinations. The following lemma summarizes its main properties. We recall

that the standard x-adic valuation valx of the complete field K((x)) uniquely extends to

a valuation on its algebraic closure K((x)), that we still denote by valx.

Lemma 3.1. (1) We have equality

q1d1 + · · ·+ qsds = valx Discy(F ). (6)

(2) Let φ be a root of Fi, and denote by ni the x-valuation of the leading coefficient of

Fi. We have the relation

qi = valx ∂yF (φ) +
(dy − 2)ni

di
. (7)

In particular, if the leading coefficient of F is invertible in K[[x]], we have that

{q1, . . . , qs} =
{

valx ∂yF (φ), φ roots of F}.

Proof. By the multiplicative properties of the discriminant and the resultant, we get that

Discy(F ) =

s∏
i=1

Discy(Fi)
∏

1≤i<j≤s

Resy(Fi,Fj)2

=

s∏
i=1

Discy(Fi)
s∏
i=1

Resy(Fi, F̂i),

and (1) follows directly by applying valx to this equality. Let now φ be a root of Fi. On

the one hand we have

∂yF (φ) = F̂i∂yFi(φ)

and on the other hand, we have the product formula∏
Fi(φ)=0

F̂i∂yFi(φ) = Resy(Fi, F̂i∂yFi) lc(Fi)1−dy ,

where lc(Fi) stands for the leading coefficient of Fi and where the left hand side product

runs over all roots of Fi. Combined with the multiplicative property of the resultant

Resy(Fi, F̂i∂yFi) = Resy(Fi, F̂i) Resy(Fi, ∂yFi)

and with its relation to the discriminant

Resy(Fi, ∂yFi) = lc(Fi) Discy(Fi),

we get the formula∏
Fi(φ)=0

F̂i∂yFi(φ) = lc(Fi)2−dy Resy(Fi, F̂i) Discy(Fi).

Since valx is invariant under the K((x))-automorphisms of the algebraic closure of K((x)),

point (2) follows by applying valx to the previous equality and by dividing by the degree

di of Fi. 2
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Remark 3.2. Lemma 3.1 implies in particular that

N ≤ valx Discy(F )

d
≤ dx(2dy − 1)

d
,

where d := min{di, i = 1, . . . , s} stands for the minimal degree of the Fi’s. In particular,
N ∈ O(dxdy). The following generalization of Example 2.2, suggested to us by Eduardo
Casas-Alvero, shows that N may reach this order of magnitude.

Example 3.3. Let F (x, y) := (y − xm)2 + yn ∈ Q[x, y], with n ≥ 3 odd. Then (0, 0) is
the unique point of the curve F = 0 that is ramified over x = 0. We can show that F
admits a unique irreducible analytic factor F1 vanishing at (0, 0), with degree d1 = 2. It
follows that

δ1 = valx Discy(F ) and r1 = 0,

while δi = ri = 0 for all i > 1. We compute here that valx Discy(F ) = mn. It follows that

N =
⌊r1 + δ1

d1

⌋
=
⌊mn

2

⌋
=
⌊dxdy

4

⌋
,

which is of the order of magnitude of dxdy.

3.2. Solving recombinations along a critical fiber.

We can derive from (4) an other obvious source of equations for S. Namely, let us
introduce for n ∈ N the F-vector subspace

Wn :=
{
µ ∈ Fs |

s∑
i=1

µi
[
F̂i∂yFi

]n
dx+1

= 0
}
,

with convention Wn = Fs when n ≤ dx + 1. For a question of degree, (4) implies that
we have the inclusions

S ⊂Wn ∀n ∈ N.
Our next result ensures that the separability order gives an a priori upper bound for n
for which Wn provides enough extra equations to solve the recombination problem.

Theorem 3.4. We have S = V (K̄) ∩Wn for all n > N .

In particular, if N ≤ dx, then the recombinations are solved by the same system of
linear equations as in the regular case:

Corollary 3.5. Suppose that N ≤ dx. Then S = V (K̄).

Remark 3.6. This corollary implies in particular that all polynomials that are non
degenerate with respect to their Newton polytope satisfy V (K̄) = S (see Section 8).

Remark 3.7. Suppose that F is separable with respect to y. For α ∈ P1
K, let us denote

by Nα the separability order of F over the fiber x = α. From inequalities,∑
α∈P1

K

Nα ≤
∑
α∈P1

K

valx−α Discy(F ) = degx Discy(F ) ≤ dx(2dy − 1),

we deduce that there always exist a fiber for which Nα ≤ dx as soon as K has cardinality
≥ 2dy − 3.

11



In order to prove Theorem 3.4, we need to prove two preliminary results. The first key

lemma will be used many times in the paper.

Lemma 3.8. Let K ⊂ L ⊂ K((x)) be a field and let G ∈ K[x, y], with degy G < dy. The

residues ρk of G/F all lie in L if and only if G is L-linear combination of the Êj∂yEj’s,

where the Ej’s stand for the irreducible factors of F over L.

Proof. One direction is clear: if G =
∑
αjÊj∂yEj , then ρk = αj ∈ L where j is de-

termined by condition Ej(x, yk) = 0. Suppose now that ρk ∈ L. Thanks to the degree

assumption on G and the separability assumption on F , we have the partial fraction

decomposition

G

F
=

dy∑
k=1

ρk
y − yk

.

Let τ ∈ Γ := Aut
(
L(x)/L(x)

)
acts on this equality. By assumption, τ leaves both G/F

and ρk fixed. Hence, we get

dy∑
k=1

ρk
y − τ(yk)

=

dy∑
k=1

ρk
y − yk

=

dy∑
k=1

ρkτ
y − τ(yk)

,

the second equality using that τ permutes the roots of F . Here, the notation kτ stands

for the unique index such that φkτ = τ(yk). The partial fraction decomposition being

unique, previous equality implies that

ρk = ρkτ ∀ τ ∈ Γ.

Since Γ acts transitively on the set of roots of each L-irreducible factor Ej , it follows that

ρk = ρk′ whenever Ej(x, yk) = Ej(x, yk′) = 0. Hence, there exist constants α1, . . . , α` ∈ L
such that

G

F
=
∑̀
j=1

αj

( ∑
k|Ej(yk)=0

1

y − yk

)
=
∑̀
j=1

αj
∂yEj
Ej

.

The result follows from multiplication by F . 2

The next lemma computes the valuations of the roots of F .

Lemma 3.9. Let F ∈ K[[x]][y] be an irreducible polynomial of degree d in y. Let a and b

stand respectively for the valuation of the leading coefficient and the constant coefficient

of F seen as a polynomial in y. Let φ ∈ K((x)) be a root of F . Then valx(φ) = (b− a)/d

and either a or b is equal to 0.

Proof. Since F is irreducible, at least one of its coefficient has valuation 0. Hence, if

both a and b are non zero, then its Newton polytope would contain at least two distinct

compact edges (Section 8). This is impossible since F is irreducible. Let N stands for the

norm of the field extension of K((x)) defined by F . Then N(φ) is equal to the quotient

of the constant coefficient of F by its leading coefficient. Hence valx N(φ) = b−a and we

conclude thanks to the relation valx φ = valx N(φ)/ deg(φ). 2
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Proof of Theorem 3.4. We already saw that S ⊂ V (K̄) ∩Wn and we need to prove the
reverse inclusion when n > N . Let µ ∈ V (K̄) ∩Wn. Thanks to the previous lemma, and
by definition of Wn, we deduce that there exists some constants αj ∈ K̄ such that

s∑
i=1

µi
[
F̂i∂yFi

]m
=
∑̀
j=1

αjÊj∂yEj , (8)

where m = max(dx + 1, n) and where the Ej ’s stand for the irreducible factors of F over

K̄. Let φ ∈ K((x)) be a root of Fi and let j be the unique index such that Ej(φ) = 0.
Using the relations

F̂i∂yFi(φ) = Êj∂yEj(φ) = ∂yF (φ),

we get by evaluating (8) at φ an equality

(µi − αj)∂yF (φ) = xmR(φ) (9)

for some R ∈ K[[x]][y]. We need a lower bound on the valuation of R(φ). We remark that
the coefficient of ydy−1 in ∂yF is equal to dy lcy(F ). Since the leading coefficient of F is a
polynomial in x of degree at most dx, equation (9) implies that R has y-degree ≤ dy − 2.
Hence, ultrametric inequality combined with Lemma 3.9 gives

valxR(φ) ≥ min{valx φ
i, i = 0, . . . , dy − 2} ≥ − (dy − 2)ni

di
,

(recall that xni stands for the leading coefficient of Fi). Suppose that µi 6= αj . Hence,
(9) gives

valx ∂yF (φ) ≥ m− (dy − 2)ni
di

.

By Lemma 3.1, this is equivalent to that m ≤ qi, contradicting our hypothesis m =
max(dx + 1, n) > N . It follows that µi = αj . Combined with (8), we get that

G :=
[ s∑
i=1

µiF̂i∂yFi
]dx+1

=

s∑
i=1

µiF̂i∂yFi.

In particular, the residues of G/F all lie in F ⊂ K, and it follows from Lemma 3.8 that

G =

r∑
i=s

µiF̂i∂yFi =

r∑
j=1

cjF̂j∂yFj .

for some cj ∈ K. Since Fi is co-prime to F̂i∂yFi by hypothesis, this relation forces
equality µi = cj when Fi divides Fj . It follows that µ ∈ S. �

Remark 6. As an optimization, the vector subspace Wn may be defined to depend on
the Newton polytope instead of partial degrees. Namely, it’s enough to look for linear
combinations

∑
i µi
[
F̂i∂yFi

]n
whose Newton polytope is contained in that of ∂yF .

4. Counting the number of irreducible factors

We show here how to bound the number of factors with the dx + 1-truncation order
and we deduce a deterministic irreducibility test that requires the only 2dx-truncation
order. We still suppose that F is primitive with respect to y.

13



4.1. An upper bound for the number of factors

Example 2.2 suggests to introduce the vector subspace Z of vectors µ whose associated
truncated polynomial Gµ is zero, that is

Z :=
{
µ ∈ Fs |

s∑
i=1

µi
[
F̂i∂yFi

]dx+1
= 0
}
.

We have the following result.

Proposition 4.1. We have V (F) = S ⊕ Z.

Proof. We already saw that S ⊂ V (F), while the inclusion Z ⊂ V (F) trivially holds.
Hence, we get an inclusion S+Z ⊂ V (F). Let us show the reverse inclusion. If µ ∈ V (F),
it follows from Lemma 3.8 that Gµ is F-linear combinations of the irreducible factors of
F over K. It follows that

s∑
i=1

µi[F̂i∂yFi]dx+1 =

s∑
i=1

αi[F̂i∂yFi]dx+1,

for some α = (α1, . . . , αs) ∈ S. In particular, µ−α ∈ Z. Equality V (F) = S +Z follows.
Finally, if µ ∈ S ∩ Z we get that

s∑
i=1

µiF̂i∂yFi =

s∑
i=1

µi
[
F̂i∂yFi]dx+1 = 0,

so that µ = 0 by linear independence of the F̂i∂yFi’s. It follows that V (F) = S⊕W . 2

Remark 4.2. We have Z = 0 as soon as the separability order satisfies N ≤ dx + 1.
Namely, we have in that case S = V (K̄) by Theorem 3.4 and we conclude thanks to the
inclusion S ⊕ Z = V (K) ⊂ V (K̄).

For fields of positive characteristic, we can take F as the prime field of K, in which case
the Niederreiter operator leads to an explicit system of equations for V (F) (see Section
5). Hence, Proposition 4.1 allows to compute the number of irreducible factors

r = dimF V (F)− dimF Z

with linear algebra from the (dx + 1)-truncated analytic factors only. For fields of char-
acteristic zero, testing whether the residues lie in K is a much harder task. In that case,
we only get equations for V (K̄), so that Proposition 4.1 a priori allows only to compute
the upper bound

r ≤ dimF V (K̄)− dimF Z.

This problem motivates to explore in more details the relations between V (F) and V (K̄).

4.2. On the relations beetween V (F) and V (K̄)

In regards to the Proposition 4.1, we may ask whether equality V (F) = V (K̄) holds.
We could not prove nor disprove this equality. However, we give here some conditions
under which it holds. Let us first note the following lemma.

Lemma 4.3. If all the absolute factors of F are defined over K, then V (K) = V (K̄).

14



Proof. By Lemma 3.8, if µ ∈ V (K̄), then Gµ =
∑
αjÊj∂yEj for some αj ∈ K̄, and

where the Ej ’s stand for the irreducible absolute factors of F . By assumption, we have
that Ej ∈ K[x]. Applying τ ∈ AutK(K̄) to the previous equality, and using that Gµ has
coefficients in K, we get that∑

j

τ(αj)Êj∂yEj =
∑
j

αjÊj∂yEj ,

which implies that τ(αj) = αj by K̄-linear independence of the Êj∂yEj ’s. This being
true for all τ , it follows that αj ∈ K. Hence µ ∈ V (K) by Lemma 3.8. 2

To each rational factor Fj of F , we associate the integer

Mj := min
{
bqic, Fi divides Fj in K[[x]][y]

}
.

Roughly speaking, Mj measures the minimal contact order of the curve Fj = 0 with the

complementary curve F̂j = 0 along the line x = 0. We denote by

M := max{Mj , j = 1, . . . , r}.

Note the obvious relation M ≤ N with the separability order.

Proposition 4.4. We have V (K̄) ∩Wn = V (F) ∩Wn for all n > M .

Proof. The proof is similar to that of Theorem 3.4. Let n > M and denote by m :=
max{n, dx + 1}. By Lemma 3.8 and by definition of Wn we have µ ∈ V (K̄) ∩Wn if and
only if

s∑
i=1

µi[F̂i∂yFi]m =

t∑
k=1

αkÊk∂yEk, (10)

where the Ek ∈ K̄[x, y] stand for the absolutely irreducible factors of F . Let us fix Fj
a rational factor of F . By assumption, there exists Fi a divisor of Fj such that qi ≤ n.

Let Ek be a divisor of Fj . Then Ek shares at least one root φ ∈ K(x) with Fi. Hence, by
evaluating (10) at φ we get that

(µi − αk)∂yF (φ) = xmR(φ)

for some R ∈ K[[x]][y]. Taking x-valuations, and reasonning as in the proof of Theorem
3.4, we get that µi 6= αk implies qi ≥ m, a contradiction. Hence αk = µi ∈ F for all
irreducible factors Ek of Fj . Repeating this reasoning for all factors Fj of F , we deduce
by regrouping the factors Ek by conjugacy classes that we have

s∑
i=1

µi[F̂i∂yFi]m =

s∑
j=1

cjF̂j∂yFj ,

for some cj ’s in F. For a degree reason, this is equivalent to that

s∑
i=1

µi[F̂i∂yFi]dx+1 =

s∑
j=1

cjF̂j∂yFj and

s∑
i=1

µi[F̂i∂yFi]mdx+1 = 0

The first equation is equivalent to that µ ∈ V (F) by Lemma 3.8, while second equation
is equivalent to that µ ∈Wn by definition. 2
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Last Proposition says in particular that if each irreducible rational factor of F has at
least one branch with qi ≤ dx, then we have V (K̄) = V (F). This is the case for instance
in Example 2.2, Section 2. Here is a trivial example that illustrates that the converse
doesn’t hold.

Example 4.5. Let F (x, y) = ((y − x)2 + y10)(y − x) ∈ Q[x, y]. Then F has exactly 3
anaytic factors over Q which satisfy

F1 ≡ (y − x)2 mod x4, F2 ≡ y − x mod x4, F3 = y8 + 1 + · · · .

We find here that q1 = q2 = 10. In particular, the rational factor y−x of F has a unique
branch F2 and this branch satisfies q2 > dx + 1 = 4. We have that

F1 ≡ F2
2 mod xdx+1 =⇒ (1,−2, 0) ∈ Z

and we can show that this is the only possible relation. Hence dimZ = 1. Since clearly
dimS = 2, it follows from Proposition 4.1 that dimV (Q) = 3. Since s = 3 is the
dimension of the ambient space, it follows that V (Q̄) = V (Q) = Q3. Observe that we
could not use directly Lemma 4.3 to show this equality since F has two absolute factors
y − x+ iy5 and y − x+ iy5 that are not defined over Q.

4.3. Number of factors. Irreducibility test.

Proposition 4.4 leads to a formula for r that depends only on the M -truncated factors:

Corollary 4.6. The number of rational factors is equal to

r = dim V (K̄) ∩WM+1 − dim Z ∩WM+1,

hence can be computed with the only truncated precision max(dx + 1,M + 1).

Proof. We know from Proposition 4.1 that V (F) = S ⊕ Z. Intersecting with Wn, and
using that S ⊂Wn, we get that

S ⊕ (Z ∩Wn) = (S ⊕ Z) ∩Wn = V (F) ∩Wn = V (K̄) ∩Wn.

for all n > M , the last equality thanks to Proposition 4.4. The corollary follows by
counting dimensions. 2

Of course, we can not a priori compute M without knowing the rational factorization
so that Corollary 4.6 seems to be useless from a computational point of view. However,
it leads to an irreducibility test over K with the only 2dx-truncated precision.

Corollary 4.7. The polynomial F is irreducible over K if and only if

dim V (K̄) ∩W 2dx − dim Z ∩W 2dx = 1.

Proof. Suppose that dim V (K̄)∩W 2dx −dim Z ∩W 2dx = 1. Since the inclusion W 2dx ⊂
Wn holds for all n ≥ 2dx we deduce from Corollary 4.6 that dimS = 1. Suppose now that
F is irreducible over K. Then it’s enough to show that M < 2dx by the same argument.
Suppose on the contrary that M ≥ 2dx. Since F is irreducible, we have by definition of
M that qi ≥ 2dx for all i. It follows from Lemma 3.1 that

valx(Discy F ) =

s∑
i=1

qidi ≥ 2dx

s∑
i=1

di = 2dxdy,
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which is impossible for a degree reason. 2

4.4. A combinatorial approach for solving recombinations

We show here that under some reasonable conditions, we can compute the factorization
of F just by knowing V (F) and Z, hence from the (dx + 1)-truncated analytic factors
only. Let us introduce the subset

I :=
{
i ∈ {1, . . . , s}, µ ∈ Z ⇒ µi = 0

}
.

and let

L :=
{
µ ∈ Fs, µi = 0 ∀ i /∈ I

}
.

We denote by π : Fs → L the natural projection on L.

Definition 4.8. We say that F is reasonably ramified over x = 0 if

dim π(V (F)) = dimV (F)− dimZ.

In other words F is reasonably ramified if and only if for all j = 1, . . . , r, there is an
analytic factor Fi of Fj such that µ ∈ Z implies µi = 0. In particular, if M ≤ dx + 1,
then F is reasonably ramified thanks to the proof of Proposition 4.4. Note that for fields
with positive characteristic, we can test if F is reasonably ramified since we can then
compute V (F), Z and L (see Subsection 5.2). In characteristic zero, this will be the case
if we know moreover that V (K̄) = V (F).

Proposition 4.9. Suppose that K has characteristic zero or strictly greater than dy.
Suppose that F is reasonably ramified over x = 0. Suppose that V (F) = Z ⊕ T for some
vector subspace T whose reduced echelon basis (w1, . . . , wr) form a partition of (1, . . . , 1).
Then,

Fj = prim
[

lc(F )

s∏
i=1

Fwjii

]dx+1

j = 1, . . . , r

and all rational factors Fj of F can be computed within Õ(dxdy) field operations.

Here, prim stands for the primitive part with respect to y. In order to prove Proposition
4.9, we first need a key lemma. We denote by R := K[[x]]/(xdx+1) and by fi the class of
Fi in R. Since F is not divisible by x, we have that fi ∈ R∗[y], where R∗ stands for the
multiplicative group of non zero divisors. In particular, it makes sense to compute fki in
the total ring of fractions of R[y] for any integer k ∈ Z.

Lemma 4.10. Suppose that K has characteristic zero or strictly greater than dy, and let
µ ∈ {0, 1}s. Then µ ∈ Z if and only if

∏r
i=1 f

µi
i = 1 ∈ R. If K has characteristic zero,

the same conclusion holds with the weaker hypothesis µ ∈ Zs.

Proof. We have equality ∑
µif̂i∂yfi = f

(∏
fµii
)′∏

fµii

in the total ring of fractions of R[y]. Hence µ ∈ Z if and only if
(∏

fµii
)′

= 0, which is
equivalent to that

∏
fµii ∈ R∗(yp), where p stands for the characteristic of K. If p > dy,
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and since µi ∈ {0, 1}, we necessarily have
∏
fµii ∈ R∗ for a degree reason. If p = 0 the

same holds obviously. In particular, we must have∏
fµii =

∏
fµii (∞) :=

∏
lc(fi)

µi = xk,

for some k ∈ Z. But we know that valx(fi) = 0 for all i, hence we must have k = 0. 2

Proof of Proposition 4.9. We have by assumption that V (K) = S ⊕ Z where π(Z) = 0
and where the reduced echelon basis (v1, . . . , vs) of S is such that π(v1), . . . π(vs) are non
zero vectors of {0, 1}s in reduced echelon form. Hence the same property has to hold
for the basis (w1, . . . , ws) of T and up to reordering the wj ’s, we must have equality
π(wj) = π(vj), forcing relations wj − vj ∈ Z. Then the proof of Proposition 4.9 then
follows from Lemma 4.10 combined with relations (2) and (3). Since wj has entries in

{0, 1}, the complexity for computing Fj belongs to Õ(dx degy Fj) using fast multiplication
in R[y] (see the proof of Proposition 6.1 in Section 6 for details concerning complexity
issues). The last statement then follows by adding this cost over all j. �.

Example 4.11. Let us return to example 2.2 of Subsection 2.2. We find that

V (K) =
〈
(1, 0, 0, 0, 1), (0, 1, 0, 0, 1), (0, 0, 1, 1,−1)

〉
and Z = 〈(1,−1, 0, 0, 0)〉.

It follows that I = {3, 4, 5} and L = {µ ∈ K5, µ1 = µ2 = 0}: the projection of V (K) on
L is

π(V (K)) =
〈
(0, 0, 0, 0, 1), (0, 0, 1, 1,−1)

〉
,

which has dimension dimV (K) − dimZ = 2(= dimS). Hence F is reasonably ramified.
Let T be such that V (K) = Z ⊕T and such that the reduced echelon basis (w1, w2) of T
is a partition of (1, . . . , 1). The constraints wi ∈ {0, 1}5 ∩ V (K), wi 6= 0 and w1 + w2 =
(1, 1, 1, 1, 1) lead to the two possible solutions

(w1, w2) = ((1, 0, 0, 0, 1), (0, 1, 1, 1, 0)) or (w1, w2) = ((1, 0, 1, 1, 0), (0, 1, 0, 0, 1)),

corresponding respectively to the factorizations

(F1, F2) = ([F1F5]dx+1, [F2F3F4]dx+1) or (F1, F2) = ([F1F3F4]dx+1, [F2F5]dx+1).

But we know here that [F1]dx+1 = [F2]dx+1 since (1,−1, 0, 0, 0) ∈ Z. Hence both solutions
determine the irreducible factorization of F , as predicted by Proposition 4.9.

Example 4.12. Let us return to example 4.5. We have

V (K) = 〈(1, 0, 0), (0, 1, 0), (0, 0, 1)〉 and Z = 〈(1,−2, 0)〉.

Here I = {3}, L = {µ1 = µ2 = 0} and π(V (K)) = 〈(0, 0, 1)〉 has dimension 1 <
2 = dimV (K) − dimZ. So F is not reasonably ramified. The family of all possible
complementary subspaces T of Z in V (K) whose reduced echelon basis forms a partition
of (1, 1, 1) is

T = 〈(1, 0, 0), (0, 1, 1)〉, T = 〈(0, 1, 0), (1, 0, 1)〉 or T = 〈(0, 0, 1), (1, 1, 0)〉.

Contrary to the previous example, only the second solution leads to the good factorization
of F .
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Unfortunately, for more complicated examples, looking for a complementary vector
space T of Z in V (K̄) whose reduced echelon basis form a partition of (1, . . . , 1) might
not be an easy task, even though we know such a T exists. An alternative approach in
the zero characteristic case is to use linear algebra over Z. Namely, we can suppose in
that case that F = Q, so that V (F) ∩ Zs is a free Z-module or rank dimV (F). Recall
that the Hermite normal form of a matrix with integer entries is such that the leading
entry (first non zero entry) of a non-zero row is positive and strictly to the right of the
leading entry of the row above it. Moreover, all entries in a column above a leading entry
are non-negative and strictly smaller than the leading entry. This forces also all entries
in a column below a leading entry to be zero. Such a form exists and is unique, and it
conserves the row space [31]. We have:

Proposition 4.13. Suppose that K has characteristic zero and that F is reasonably
ramified. Then we can order the set {1, . . . , s} such that I = {1, . . . , `} for some ` ≥ s.
Let (w1, . . . , wr) be the first r vectors of the Hermite normal form of a basis of the free
Z-module V (F) ∩ Zs. Then,

Fj = prim
[

lc(F )

s∏
i=1

Fwjii

]dx+1

j = 1, . . . , r.

If moreover the wj’s have positive entries, then we can compute the Fj’s within Õ(dxdy)
field operations.

Proof. We have by assumption that V (K) = S⊕Z where π(Z) = 0 and where the reduced
echelon basis (v1, . . . , vs) of S is such that π(v1), . . . , π(vs) are non zero vectors in row
echelon form. After reordering the columns as in the Proposition, it follows from the
definition of the Hermite normal form that π(wj) = π(vj), which forces wj−vj ∈ Z∩Zs.
The conclusion then follows from Lemma 4.10. If the wj ’s have positive entries, the
computation of all Fj ’s reduces to a product of polynomials whose total degree sum is

dy. This costs Õ(dxdy). 2

The advantage is that we reduce our recombination problem to linear algebra (over
Z). The Hermite normal form of a n × m matrix A of rank r with integer coefficients

can be computed with Õ(nmrω−1 log(||A||)) bit operations, where ||A|| stands for the
maximum magnitude of the entries of A [31, Chapter 6]. This bit complexity seems to be
reasonable for our purpose although it’s not clear how to compare it to the arithmetic
complexity of the remaining steps of the algorithm. An other difficulty is illustrated in
the two following examples: some of the wj ’s might have negative entries, in which case
the complexity of computing the Fj ’s may increaze.

Example 4.14. Let us continue example 4.11. After reordering, we get that the Hermite
normal form of the basis of V (K) ∩ Z5 is

〈w1 = (1, 0, 1, 0, 1), w2 = (0, 1, 0, 0, 1), (0, 0, 0, 1,−1)〉,

leading to the factorization

(F1, F2) = ([F1F3F5]dx+1, [F2F5]dx+1).

Here, the vectors w1 and w2 have positive entries, and the computation of the Fj ’s is
fast. Note that the vectors w1 and w2 do not necessarily form a partition of (1, 1, 1, 1, 1)
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any more. In particular, the analytic factor F4 has disappeared from the recombination
process due to the relation [F4]dx+1 = [F5]dx+1.

Example 4.15. Suppose that s = 5 and that

S = 〈(1, 0, 1, 0, 0), (0, 1, 0, 1, 1)〉 Z = 〈(0, 0, 1, 2,−3)〉.

Then F is reasonably ramified. The Hermite normal form of the basis of V (K) ∩ Z5 is(
(1, 0, 0,−2, 3), (0, 1, 0, 1, 1), (0, 0, 1, 2,−3)

)
.

The vector w1 = (1, 0, 0,−2, 3) has now negative entries and the computation of the
corresponding factor

F1 =
f1f

3
5

f2
4

is a priori more expensive. Note that if we had reordered the indices such that Z =
〈(0, 0, 2, 1,−3), we would have obtained w1 and w2 with positive entries.

Remark 4.16. In general, we can show that if F is reasonably ramified and if Z is
generated by vectors with at most two non zero entries (meaning that all branches with
high q-invariant intersect at most one other branch), then we necessarily have wj ∈ Ns. A
concrete example for which it is not the case is given by F = (y6−(y−x)2)(y−x) ∈ Q[x, y].
In that case Z = 〈(0, 0, 0, 2,−1,−1)〉.

5. Conditions for constant residues. Equations of V (L).

There are two main approaches that allow to determine when the residues of G/F do
not depend on x. The first approach is related to the first De Rham cohomology group of
the complementary set of the affine curve F = 0 in A2

K. It allows to test whether certain
differential meromorphic forms are linear combinations of the logarithmic derivatives of
the absolute factors of F by checking closeness. This is the approach followed by Gao
[11]. The second approach, that we will follow here, is based on a divisibility criterion by
F and has been developed by Lecerf [26]. Hence, this section is essentially a re-lecture of
Section 1 in [26], except that we have now to take into account that the leading coefficient
of F is not necessarily invertible in K[[x]].

From now on, we fix µ ∈ Fs and we denote by G := Gµ the corresponding polynomial
and by ρ1, . . . , ρdy the residues of G/F at the roots of F . We denote by p ≥ 0 the
characteristic of K and we adopt the convention K(xp) = K for p = 0.

5.1. Equations for V (K̄)

We want to know when the residues ρk ∈ K(x) lie in the subfield K̄. Since F is
separable, ρk belongs to the separable closure K(x)sep ⊂ K(x) of K(x). Since the usual
K̄-derivation of K̄(x) uniquely extends to a K̄-derivation of K(x)sep, we can talk about
the derivative of ρk. Hence, an obvious necessary condition for that ρk ∈ K̄ is that its
derivative vanishes. More precisely, we have the following lemma:

Lemma 5.1. We have ρ′k = 0 if and only if ρk ∈ K(xp). If moreover K has characteristic
zero or greater than 2dx(dy − 1), then ρ′k = 0 if and only if ρk ∈ K̄.

Proof. See for instance the proof of Lemma 2.4 in [11]. 2
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Let us denote by K[x, y]m,n the vector space of bivariate polynomials of degree ≤ m
in x and ≤ n in y. We introduce the K-linear operator

D : K[x, y]dx,dy−1 −→ K[x, y]3dx−1,3dy−3

G 7−→
(
GxFy −GyFx

)
Fy −

(
FxyFy − FyyFx

)
G,

with the standard notations Fy, Fxy, etc. for the partial derivatives. Let yk(x) be the
root of F corresponding to the residue ρk. By combining the formulas

ρk(x) =
G(x, yk)

Fy(x, yk)
and y′k(x) = −Fx(x, yk)

Fy(x, yk)
,

we are led to the equality

ρ′k(x) =
D(G)(x, yk)

F 3
y (x, yk)

,

so that
ρ′k = 0 ⇐⇒ D(G)(x, yk) = 0.

In particular, since F is separable with respect to y, it follows that ρ′k = 0 for all
k = 1, . . . , dy if and only if F divides D(G) in K(x)[y]. In order to reduce this division
problem to a well estimated finite number of linear equations, we localize.

Let a ∈ K[x] be an irreducible polynomial which is co-prime to the leading coefficient
lcy(F ) ∈ K[x] of F . We denote by

A := K[x](a)

the localization of K[x] at a. Hence, euclidean division by F in A[y] is well defined. Each
Q ∈ A[y] has a unique a-adic expansion

Q(y) =

+∞∑
i=0

qia
i, qi ∈ K[x, y], degx qi < deg a.

For each pair of positive integers 0 ≤ m ≤ n, we introduce the truncated polynomial

{
Q
}n
m

:=

n−1∑
i=m

qia
i.

We have the following lemma, generalizing Lemma 3 in [26]:

Lemma 5.2. Let F and D(G) as before and denote by D(G) = QF + R the euclidean
division of D(G) by F in the ring A[y]. Let

m :=
⌊2dx − 1

deg a

⌋
+ 1 and n :=

⌈3dx − 1

deg a

⌉
+ 1.

Then F divides D(G) in K(x)[y] if and only if
{
Q
}n
m

=
{
R
}n

= 0.

Proof. Since the leading coefficient of F is invertible in A, then F divides D(G) in K(x)[y]
if and only if it divides D(G) in A[y]. Suppose that F divides D(G) in K(x)[y]. Since both
F and D(G) lie in K[x, y] and F is primitive with respect to y, it follows from Gauss
lemma that F divides D(G) in K[x, y]. It follows that R = 0 and that Q ∈ K[x, y] has
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degree degx D(G) − degx F ≤ 2dx − 1. In particular, the coefficients of ai in the a-adic
expansion of Q are zeroes as soon as i deg a > 2dx− 1, that is for all i ≥ m. In particular{
Q
}n
m

= 0. Conversely, suppose that
{
Q
}n
m

=
{
R
}n

= 0. Then the a-valuation of

D(G)−
{
Q
}m

F is greater or equal to n. It follows that either D(G) =
{
Q
}m

F or

degx(D(G)−
{
Q
}m

F ) ≥ ndeg a ≥ 3dx + a− 1.

But we have that

degx
{
Q
}m ≤ (m− 1) deg a+ deg a− 1 ≤ 2dx + deg a− 2

so that degx(D(G) −
{
Q
}m

F ) ≤ 3dx + deg a − 2. This forces equality D(G) =
{
Q
}m

F
in A[y]. Since all members of the equality lie in K(x)[y], the equality holds in the ring
K(x)[y]. 2

Remark 5.3. If the leading coefficient of F does not vanish at 0, then we can take
a(x) = x and A = K[[x]] in the previous lemma. More generally, if K has cardinality
greater than dy, we can reduce to that case up to replace F (x, y) by ydyF (x, α + 1/y)
for some α ∈ K such that F (0, α) 6= 0. This Möbius transformation has a negligible cost
for our purpose. It only exchanges the points (0,∞) and (0, α) and does not modify the
geometry of F along the fiber x = 0.

If K has cardinality ≤ dy, then both degenerate situations u(0) = 0 and F (0, α) = 0 for
all α ∈ K might hold simultaneously. In such a case, we need to find a prime polynomial
a ∈ K[x] co-prime to u. Note that we can find such an a with deg a ∈ O(log(deg u)) (see
the proof of Proposition 6.1 in Section 4).

Remark 5.4. The situation a(x) 6= x requires to perform euclidean division in A[y] with
A 6= K[[x]]. This may break the sparse structure of D(G) inherent to the sparse structure
of the analytic factors Fi ∈ K[[x]][y].

According to Lemma 5.2, we introduce the following F-linear map:

Da : Fs −→K[x, y]×K[x, y]

µ 7−→
(
{Q}nm
am

,
{
R
}n)

where a,m, n are defined as in Lemma 5.2 and where Q and s are defined by the euclidean
division D(Gµ) = QF +R in A[y].

Corollary 5.5. We have equality ker(Da) = V (K(xp)). If moreover K has characteristic
zero or greater than 2dx(dy − 1), then ker(Da) = V (K̄).

Proof. Follows by combining Lemma 5.1 and Lemma 5.2. 2

The image of Da is contained in the finite-dimensional vector space

Da(Fs) ⊂ K[x, y]dx−1,2dy−3 ×K[x, y]3dx−1,dy−1.

Hence, for F = K, the computation of ker(Da) reduces to compute the kernel of a K-linear
system of s unknowns and O(dxdy) equations.
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5.2. The case of small characteristic

When the characteristic p of K is small, we need supplementary condition in order to
know when ρk ∈ K̄. In fact, we will get in such a case the stronger conditions ρk ∈ Fp
thanks to the following Fp-linear operator:

N : K[x, y]dx,dy−1 −→K[x, yp]pdx,dy−1

G 7−→Gp − ∂p−1
y (GF p−1).

The operator N is well defined since ∂y(N(G)) = 0. The vector space K[xa, yb]m,n has
to be understood as the vector space of polynomials of bi-degree (m,n) in the variables
(xa, yb). The operator N was introduced by Niederreiter in the context of univariate
factorization over finite fields [27], and then used for bivariate factorization in [26].

Lemma 5.6. We have V (Fp) = {µ ∈ Fsp | N(Gµ) = 0}

Proof. This follows from Theorem 2 in [27]. 2

Since degx N(Gµ) = pdx, the number of linear equations to be solved for computing
ker(N(Gµ)) grows linearly with p. The idea developed in [26] is to combine N with the
operator D in order to cut down this dependancy in p.

Lemma 5.7. Suppose that µ ∈ ker(Da). Then N(Gµ) ∈ K[xp, yp].

Proof. See [26], Lemma 4. 2

Hence, previous lemma ensures that the Fp-linear map

Na : ker(Da)−→K[xp, yp]dx,dy−1

µ 7−→N(Gµ)

is well-defined. In particular, if K = Fpk is a finite field, the computation of ker(Da)
reduces to compute the kernel of a K-linear system of dim ker(Da) ≤ r unknowns and
O(kdxdy) equations over Fp.

6. Algorithms and complexity

We combine now our previous results in order to give an algorithm for factorization and
an algorithm for computing the number of rational factors, and we study their complex-
ities. We recall that we use the Õ notation to hide logarithmic factors in the complexity
estimates. Our cost analyses will use the following classical complexity estimates for the
basic operations:
• The product of two univariate polynomials of degree at most d over a ring A can be

be computed with Õ(d) operations over A [16, Theorem 8.23];
• The resultant and the extended greatest common divisor of two univariate polynomials

of degree at most d over a field A can be computed with Õ(d) operations in A [16,
Chapter 11];
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• The product of s univariate polynomials G1, . . . , Gs over a field A whose degree sum
is d takes Õ(d log(s)) operations in A thanks to the sub-product tree technique [16,
Chapter 10];

• If F ∈ A[y] has degree d, then the remainders of F modulo all the Gi can also be com-

puted with Õ(d log(s)) operations in A (simultaneous reduction). The inverse problem
(Chinese remaindering), has the same cost [16, Chapter 10].

• We can compute the reduced echelon basis of a vector space defined by N equations
and s ≤ N unknowns over a field A with O(Nsω−1) operations in A, where 2 < ω < 3
is the usual matrix multiplication exponent [31, Theorem 2.10].

6.1. A rational factorization algorithm

We obtain finally a deterministic algorithm for irreducible rational factorization of
separable bivariate polynomials. The field F now stands for K if K has characteristic zero
or greater or equal to dx(dy − 1) and F stands for the prime field Fp of K otherwise.
Given a vector space V over F, we denote by rebF(V ) the reduced echelon basis of V over
F. If we say compute V , this means compute rebF(V ).

Algorithm : Critical Factorization

Input: A bivariate polynomial F ∈ K[x, y] separable with respect to y.

Output: The irreducible rational factors of F .

Step 0. Compute the content f ∈ K[x] of F with respect to y and do F ← F/f . Compute
f1, . . . , ft the irreducible factors of f over K.

Step 1. Compute the truncated analytic factors [F1]dx+1, . . . , [Fs]dx+1 of F . If s = 1 then
return (f1, . . . , ft, F ). Otherwise, build the polynomials

[
F̂i∂yFi]dx+1 for all i = 1, . . . , s

and initialize S0 ← Fs.

Step 2. If lcy(F )(0) 6= 0, let a ← x. Otherwise, compute a ∈ F[x] irreducible, co-prime
to lcy(F ), of degree in O(log dx).

Step 3. Build the F-linear system associated to Da and compute S0 ← ker(Da). If
dimF S0 = 1, return (f1, . . . , ft, F ). If K has characteristic zero or greater than dx(dy−1),
then go to Step 5. Else go to Step 4.

Step 4. Build the F-linear system associated to Na and compute S0 ← S0 ∩ ker(Na). If
dimF S0 = 1, return (f1, . . . , ft, F ). If reb(S0) does not form a partition of (1, . . . , 1) or if
Z 6= 0 then go to Step 5. Otherwise, go to Step 7.

Step 5. Compute q := bv/dc where v := valx(Discy(F )) and d is the minimal y-degree
of the [Fi]dx+1. If q ≤ dx, go to Step 7, otherwise go to Step 6.

Step 6. Compute the q-truncated analytic factors of F and compute S0 ← S0 ∩W q.

Step 7. We have S = S0. For each vj ∈ reb(S), j = 1, . . . , r, compute

F̃j :=
[

lc(F )

s∏
i=1

Fvjii

]dx+1

and compute the primitive part Fj of F̃j with respect to y.
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Step 8. Return (f1, . . . , ft, F1, . . . , Fr).

The proof of Theorem 1 follows from the following proposition.

Proposition 6.1. The algorithm Critical Factorization is correct. It performs at most
one univariate factorisation in K[x] of degree dx and :

- If K has characteristic zero or greater than dx(dy − 1), then at most

O(dxd
2
y + dy max(dx, q)s

ω−1) + C(max(dx, q), dy)

arithmetic operations over K.
- If K = Fpk , then at most

Õ(kdxd
2
y + kdy max(dx, q)s

ω−1) +O(k)C(max(dx, q), dy)

operations over Fp.

Proof. We have S0 = V (Fp) at the end of Step 4 by Lemma 5.1. Hence S = S0 if and
only if Z = 0 by Proposition 4.1. If reb(S0) does not form a partition of (1, . . . , 1) or
Z 6= 0, then S 6= S0 and we need to go to Step 5. Otherwise, the recombination problem
is solved and we can go directly to Step 7.

We have S0 = V (K̄) or S0 = V (F) at the beginning of Step 5. Since degx lc(Fi) ≤ dx,
we have that degy Fi = degy[Fi]dx+1. Hence q ≥ N by the Remark 3.2. It follows from
Theorem 3.4 and Corollary 3.5 that S = S0 at Step 7. For all j = 1, . . . , r, we have that

F̃j = lc(F )
lc(Fj)

Fj since

degx(lc(F )/ lc(Fj)) + degx(Fj) ≤ degx F.

Hence, the algorithm returns a correct answer. Let us study its complexity.
Step 0. Computation of the content of F requires Õ(dxdy) arithmetic operations over

K.
Step 1. Computations of the (dx + 1)-truncated Fi’s has complexity C(dx, dy) by

definition. Then we compute all
[
F̂i∂yFi]dx+1 with Õ(sdxdy) operations in K.

Step 2. If K has characteristic zero or greater than dx, we can take a = x−c for some
c such that lc(F )(c) 6= 0. Otherwise, a basic approach (certainly not the most efficient)
consists to remark that for n > logp(degx lc(F )), the polynomial

ãn :=
xp

n − x
gcd(xpn − x, lc(F ))

has positive degree and is co-prime to u. Then, we take for a an irreducible factor of ãn,
which has necessary degree less or equal to n ∈ O(log dx). Thanks to fast gcd computa-
tions, we compute ãn within Õ(max(degx lc(F ), pn)) ⊂ Õ(dx) operations. Then, we need
to perform a univariate factorization of degree at most dx in order to find a.

Step 3. In order to build the linear system of the map Da, we need first to compute
Di := D(Gei) for ei varying over the canonical basis of Fs. This has complexity Õ(sdxdy).

Then, we need to compute the a-adic expansion of the Di’s and F . This costs Õ(sdxdy)
thanks to [16], Theorem 9.15. We need then to perform s euclidean divisions in (A/am)[y]
of polynomials of degree O(dy), and where m ∈ O(dx/a). This costs Õ(sdy) operations

in A/am, hence Õ(sdxdy) operations over K. Then computing the reduced echelon basis
of ker(Da) requires O(dxdys

ω−1) operations in K.
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Step 4. We compute here S0 with at most Õ(kdxdys
ω−1) arithmetic operations over

Fp thanks to [26], Proposition 4. It has to be noticed that the construction of the linear
system associated to Na might constitute a bottleneck to the algorithm. The F-vector
space Z is determined by s unknowns and O(dxdy) equations over K, hence testing Z 6= 0
requires at most O(dxdys

ω−1) operations over K. Note that Z = 0 as soon as F is locally
irreducible along x = 0 (Lemma 6.5).

Step 5. Since v ≤ 2dxdy, we can compute Discy(F ) by considering F as a polynomial

in y with coefficient in the ring K[x]/(x2dxdy ). This requires Õ(dxd
2
y) arithmetic opera-

tions over K thanks to fast euclidean algorithm [16]. Computing q then has a negligible
cost.

Step 6. Computing the higher truncations of the Fi’s requires C(N, dy) operations

over K by definition. Then computing all
[
F̂i∂yFi]Ndx+1 requires Õ(sNdy) operations in

K. Building the linear system that determines the equations of WN ∩S0 requires at most
Õ(Ndy) operations in K thanks to the sub-product tree technique. Then computing the
reduced echelon basis of WN ∩ S0 requires at most O((N − dx)dyt

ω−1) operations over
K, where t = dimK U ≤ s.

Step 7. Let nj := degy Fj . Then the computation of F̃j requires Õ(dxnj) operations in

K, hence a total of Õ(dxdy) operations for all j. The cost of primitive parts computations
amounts to the same number of operations.

The proof follows by adding all these costs, and by remarking that one arithmetic
operation over Fpk requires O(k) operations over Fp. 2

Remark 6.2. (About Step 5.) The cost of the discriminant computation might be very
high in terms of bit complexity. Moreover, it might happen that N and q differ by a factor
of the order of magnitude of dy. Hence it is much more preferable to approximate the qi’s
(hence N) during the computation of the Fi’s, for instance by using the relations with
the characteristic Puiseux exponents of the branches Fi (see for instance [? ]). Hence,
the cost of Step 5 is included in C(N, dy). Note that if the reduced echelon basis of V (K̄)
does not form a partition of (1, . . . , 1) or if Z 6= 0, then necessarily N > dx. Finally, note
that if K = Q (or more generally a number field), there are strategies to compute the
valuation of the discriminant by working modulo a well chosen prime p [? ].

6.2. Algorithms for the number of irreducible rational factors

In the first algorithm, we suppose that K has positive characteristic, or that K is a
decomposition field of F . The field F stands for K if K has characteristic zero or for the
prime field Fp of K otherwise.

Algorithm : Number of Factors

Input: A bivariate polynomial F ∈ K[x, y] separable with respect to y.

Output: The number of irreducible rational factors.

Step 0. Compute the content f ∈ K[x] of F with respect to y and do F ← F/f . Compute
t the number of irreducible factors of f over K.

Step 1. Compute the dx + 1-truncated analytic factors of F .

Step 2. Compute r ← dimV (F). If r = 1 then return t+ 1.
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Step 3. Compute r ← r − dimZ. Return t+ r.

Proposition 6.3. The algorithm Number of Factors is correct. It performs at most one
univariate factorisation in K[x] of degree dx and :

- If K has characteristic zero, then O(dxdys
ω−1) + C(dx, dy) operations over K.

- If K = Fpk , then O(kdxdys
ω−1) +O(k)C(dx, dy) operations over Fp.

Proof. The correctness of the algorithm follows from Proposition 4.1. In positive charac-
teristic, we can compute V (F) as in the previous algorithm and the complexity analysis
follows from the proof of previous proposition 6.1. In characteristic zero, we have that
V (F) = V (K̄) by Lemma 4.3 so that we compute V (F) as in Step 3 of algorithm Critical
Factorization. The F-vector space Z is determined by s unknowns and O(dxdy) equations
over K, hence testing Z 6= 0 requires at most O(dxdys

ω−1) operations over K. 2

Finally, we have the following algorithm for an irreducibility test. Here, no hypothesis
are made on the field K.

Algorithm : Irreducibility Test

Input: A bivariate polynomial F ∈ K[x, y] separable with respect to y.

Output: True if F is irreducible over K, False otherwise.

Step 0. If F is not primitive with respect to y, then return False. Otherwise, replace F
by its primitive part.

Step 1. Compute the n-truncated analytic factors of F with n = dx + 1 if Char(K) > 0
and n = 2dx otherwise.

Step 2. Compute r ← dimV (F) if Char(K) > 0 and r ← dimV (K̄) ∩W 2dx otherwise.
If r = 1 return True.

Step 3. Compute r ← r − dimZ if Char(K) > 0 and r ← r − dimZ ∩W 2dx otherwise.

Step 4. Return True if r = 1, False otherwise.

Proposition 6.4. The algorithm Irreducibility Test is correct. It performs at most one
univariate factorisation in K[x] of degree dx and :

- If K has characteristic zero, then O(dxdys
ω−1) + C(2dx, dy) operations over K.

- If K = Fpk , then O(kdxdys
ω−1) +O(k)C(dx, dy) operations over Fp.

Proof. The correctness of the algorithm follows from Proposition 4.1 in positive char-
acteristic and from Proposition 4.7 otherwise. The complexity analysis follows from the
proof of the two previous algorithms. 2

The proof of Theorem 3 follows from the two previous propositions 6.3 and 6.4.

Let us mention that there exist also strategies based on the Newton polytope (convex
hull of the support of F ) that allow in some cases to detect easily the irreducibility of F
[12, 14].
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6.3. Locally irreducible polynomials

We recall from the introduction that we say that F is locally irreducible along the
line x = 0 (resp. absolutely locally irreducible) if the germs of curves (C,P ) ⊂ (P2

K, P )
defined by F are irreducible over K (resp. over K̄) at each rational place P of the line
x = 0, including the place at infinity.

Lemma 6.5. Suppose that K has characteristic greater or equal to dy. If F is locally
irreducible along the line x = 0, then Z = 0.

Proof. Let µ ∈ Z. we have in particular

s∑
i=1

µiF̂i∂yFi(0, y) = 0. (11)

Let us consider first an analytic factor Fi corresponding to affine place of C along x = 0.
Since F is locally irreducible along the line x = 0. It follows from Hensel’s lemma [16] that
Fi(0, y) is a power of a prime polynomial that is co-prime to F̂i(0, y). Hence relation (11)
combined with Gauss Lemma imposes that Fi(0, y) divides µi∂yFi(0, y), hence µi = 0
thanks to the assumption on the characteristic of K. Suppose now that F has an analytic
factor, say F1 that vanishes at (0,∞). By the local irreducibility assumption, F1 is the
unique such factor. Hence µ ∈ Z becomes equivalent to that

µ2 = · · · = µs = 0 and µ1[F̂1∂y(F1)]dx+1 = 0,

thanks to what we proved for the affine places. The leading coefficient of F̂1∂y(F1) is
equal to d1 lcy(F ). It has degree ≤ dx, and d1 6= 0 by assumption on K. Hence, last
equation implies µ1 = 0. 2

Lemma 6.6. If Card(K) > dy and F is locally irreducible along the line x = 0, then we
compute the (dx + 1)-truncated analytic factors of F with one univariate factorization of

degree at most dy plus Õ(dxdy) arithmetic operations over K.

Proof. Since Card(K) > dy, there exists y0 ∈ K such that F (0, y0) 6= 0. To find such an
element y0 has a negligible cost once the univariate factorization of F (0, y) is given. Then
the Möbius transformation F ← ydyF (x, α + 1/y) reduce to the case where u = lcy(F )
is a unit modulo x. Hence we are in position where

F (0, y) = u(0)

s∏
i=1

Pmii , Fi(0, y) = Pmii

for some distinct prime polynomials Pi ∈ K[y]. We can lift this factorization modulo xdx+1

with Õ(dxdy) arithmetic operations over K thanks to the multi-factor Hensel lifting [16],
Theorem 15.18. Then, we perform the inverse Möbius transformation in order to get the
analytic factors of the original polynomial. Both Möbius transformations can be done in
softly optimal time Õ(dxdy) with interpolation/evaluation. 2

Proof of Theorem 2. It follows from Lemma 6.5 and Proposition 4.1 that S = V (K) under
the assumption of Theorem 2. If K = Fpk is a finite field, we can compute a basis of V (K)

from the (dx+1)-truncated factors within Õ(kdxdys
ω−2) operations over F (see the proof
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of Proposition 6.1). Since one operation in K amounts to O(k) operations over F, the

proof follows from Lemma 6.6. If K is a decomposition field for F , we have V (K) = V (K̄)

thanks to Lemma 4.3. Since K has characteristic zero or greater than dx(2dy − 1), we

compute the reduced echelon basis of V (K̄) within Õ(dxdys
ω−1) operations over K. �

7. Absolute factorization

In order to generalize our results to the absolute case, we follow the strategy developed

by Chèze-Lecerf in the regular case [9].

Absolute factorization. We denote by E1, . . . , Er̄ the irreducible factors of F in K̄[x, y].

We represent this factorization by a family of pairs of polynomials

{(P1, q1), . . . , (Pt, qt)}

where qk ∈ K[z] is monic, degz Pk < deg qk, Pk(x, y, φ) ∈ K̄[x, y] has constant bi-degree

when φ runs over the roots of qk, and for each factor Ei there exists a unique pair (k, φ)

such that qk(φ) = 0 and

Ei(x, y) = Pk(x, y, φ).

Such a representation is not unique, but is not redundant. The qk’s are irreducible if and

only if the products
∏
qk(φ)=0 Pk(φ) are the irreducible factors of F in K[x, y].

Absolute analytic factorization. We denote by E1, . . . , Es̄ the irreducible analytic factors

of F in K̄[[x]][y]. As before, we suppose that the Ei’s are given by a collection of pairs of

polynomials

{(P1, p1), . . . , (P`, p`)}
where pk ∈ K[z] is monic, degz Pk < deg pk, Pk(φ) ∈ K̄[[x]][y] has constant degree in y

when φ runs over the roots of pk, and for each Ei there is a unique pair (k, φ) such that

pk(φ) = 0 and

Ei(x, y) = Pk(x, y, φ).

In particular, the pk’s are separable. The pk’s are irreducible if and only if ` = s, if and

only if

(degy(Pk),degz(pk)) = (ek, fk),

where ek and fk stand for the ramification index and residual degree at the rational

places of F = 0 over x = 0. We do not necessarily assume this here, the only important

point from a complexity point of view being that we necessarily have

s̄ =
∑̀
k=1

degz(pk) =

s∑
i=1

fi.

In particular, the more the curve F = 0 is ramified over x = 0, the smaller the number

of unknowns is. This is a great difference with the regular case, for which equality s̄ = dy
always holds. We call the n-truncated absolute analytic factorization the data of the pairs

([Pk]n+1, pk).
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Solving recombinations with K̄-linear algebra. In analogy to the rational case, we denote
by

S̄ = 〈v̄1, . . . , v̄r̄〉K̄ ⊂ K̄s̄

the K̄-vector space generated by the recombination vectors v̄1, . . . , v̄s solution to

Ej = ūj

s̄∏
i=1

E v̄jii , j = 1, . . . , r̄,

with ūj ∈ K[x], ūj(0) = 1. For µ ∈ K̄s̄, we denote by

Gµ :=

s̄∑
i=1

µiÊi∂yEi ∈ K̄[[x]][y].

We introduce the K̄-vector spaces

V̄ :=
{
µ ∈ K̄s̄ | [Gµ]dx+1 ∈ 〈Ê1∂yE1, . . . , Er̄∂yEr̄〉

}
.

Hence µ ∈ V̄ if and only if the residues of [Gµ]dx+1/F lie in K̄ by Lemma 3.8. We
introduce also

Z̄ :=
{
µ ∈ K̄s̄ | [Gµ]dx+1 = 0

}
,

and
W̄ :=

{
µ ∈ K̄s̄ | [Gµ]Ndx+1 = 0

}
where N is the separability order of F . Lemma 3.8 combined with Theorem 3.4 and
Proposition 4.1 give the relations

S̄ = V̄ ∩ W̄ and V̄ = S̄ ⊕ Z̄.

First equality leads to an algorithm for solving recombinations. The second equality leads
to an algorithm for computing the number of irreducible absolute factors. The idea now
is to use the Vandermonde matrices attached the polynomials pk’s in order to compute
a basis of the involved vector spaces with linear algebra over K.

The Vandermonde isomorphism. We define the partition {1, . . . , s̄} = I1 ∪ · · · ∪ I` by
requiring that ∏

i∈Ik

Ei(x, y) =
∏

pk(φ)=0

Pk(x, y, φ), k = 1, . . . `.

These products lie in K[[x]][y]. They coincide with the irreducible analytic factors of F if
and only if the pk’s are irreducible. Let nk := deg pk. If µ ∈ K̄s̄, we denote by µ(k) ∈ K̄nk
the vector whose entries are the entries of µ whose index lie in Ik. We introduce the
K̄-linear map

A = (A1, . . . , A`) : K̄s̄ −→ Ks̄ ⊗K K̄
µ = (µ(1), . . . , µ(`)) 7−→ ν := (ν(1), . . . , ν(`))

whereAk stands for the transposed of the Vandermonde matrix of the roots (φk1, . . . , φknk)
of pk. In other words, the vector

ν(k) := Ak µ
(k) ∈ Knk ⊗ K̄

is defined by

ν
(k)
j :=

nk∑
i=1

µ
(k)
i φj−1

ki .
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Since the polynomials pk are separable, each map Ak : K̄nk → Knk⊗K̄ is an isomorphism,
hence so is the map A.

Recombinations over K. For a given G ∈ K[[x]][y, z], we denote by coeff(G, zj) ∈ K[[x]][y]
the coefficient of zj in G. We have by construction that Pk divises F in the ring K[z]/(pk)[[x]][y]
and we denote by P̂k the unique polynomial such that F = PkP̂k ∈ K[[x]][y, z], with
degz P̂k < deg pk. Given ν ∈ K̄s̄, we denote by

Hν :=
∑̀
k=1

nk∑
j=1

ν
(k)
j coeff(P̂k∂yPk, zj−1).

We introduce the K-vector spaces

VK :=
{
ν ∈ Ks̄ | [Hν ]dx+1 ∈ 〈Ê1∂yE1, . . . , Er̄∂yEr̄〉K

}
ZK :=

{
ν ∈ Ks̄ | [Hν ]dx+1 = 0

}
.

and

WK :=
{
ν ∈ Ks̄ | [Hν ]Ndx+1 = 0

}
,

We have the following

Proposition 7.1. The isomorphism A : µ 7→ ν induces isomorphisms

V̄ = VK ⊗K K̄, W̄ = WK ⊗K K̄ and Z̄ = ZK ⊗K K̄.

Proof. By construction, we have that

Gµ =
∑̀
k=1

nk∑
i=1

µ
(k)
i P̂k∂yPk(φki) =

∑̀
k=1

nk∑
i=1

nk∑
j=1

coeff(P̂k∂yPk, zj−1)φj−1
ki

=
∑̀
k=1

nk∑
j=1

( nk∑
i=1

φj−1
ki

)
coeff(P̂k∂yPk, zj−1)

=
∑̀
k=1

nk∑
j=1

ν
(k)
j coeff(P̂k∂yPk, zj−1) = Hν .

The claimed isomorphisms then follow from the definitions of the involved vector spaces. 2

Proof of Theorem 4. We have shown how to compute a basis of all involved vector spaces
with linear algebra over K. Unfortunately, we don’t have the reduced echelon basis trick
when working with the unknowns ν instead of µ. To solve this problem, we rather use an
absolute partial fraction decomposition algorithm along a regular fiber, following Section
4 in [9]. We obtain the following algorithm.

Algorithm : Absolute Factorization

Input: A field K with cardinality at least dx(2dy − 1) and a bivariate polynomial F ∈
K[x, y] separable with respect to y.

Output: A family {(P1, q1), . . . , (Pt, qt)} that represents the absolute factorization of F .
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Step 1. Compute a basis ν1, . . . , νr̄ of VK ∩WK.

Step 2. Find a regular fiber x = α for some α ∈ K.

Step 3. Compute h1 := Hν1(α, y), . . . , hr̄ := Hνr̄ (α, y).

Step 4. Call Algorithm 7 in [9] in order to find (c1, . . . , cr̄) ∈ Kr̄ that separate the

residues of the hi’s.

Step 5. Let h =
∑
cihi. Call the Lazard-Rioboo-Trager algorithm (Algorithm 14 in [9])

in order to compute the absolute partial fraction decomposition of h/F (α, y).

Step 6. Call Algorithm 6 in [9] of absolute multi-factor Hensel lifting in order to lift the

decomposition of Step 6 to {(P1, q1), . . . , (Pt, qt)}.

Proposition 7.2. Let m = max(dx + 1, N) and p = Char(K). The algorithm Absolute

Factorization is correct. It performs at most

O(s̄ω−1 max(dx + 1, N)dy + r̄dxd
2
y) + C(max(dx + 1, N), dy)

operations in K if p = 0 or p > dx(2dy − 1) and at most

Õ(ks̄ω−1 max(dx + 1, N)dy + kr̄dxd
2
y) +O(k)C(max(dx + 1, N), dy)

operations over Fp if K = Fpk .

Proof. Given the Pk’s and the pk’s, we can compute a basis of the K-vector spaces VK
and WK with the the same cost as in the rational case, with the number of unknowns s

being replaced by s̄. Given (ν1, . . . , νr̄) a basis of VK ∩WK, we have by construction that

〈Hν1
, . . . ,Hνr̄ 〉K̄ = 〈Ê1∂yE1, . . . Êr̄∂yEr̄〉K̄,

with Hνi ∈ K[x, y]. By assumption on the cardinality of the field, we know that there

exists a regular fiber x = α over which F (α, y) is separable of degree dy. We can find

such a fiber by computing DiscF (i, y) for i = 1, . . . , dx(2dy − 1) + 1 until we reach a

non vanishing discriminant. This costs at most O(dxd
2
y) operations over K. Then we

refer to [9], Paragraph 4 for the remaining steps of the algorithm. Step 4 costs O(r̄dxd
2
y)

operations in K, step 5 costs O(d2
y) operations in K and step 6 costs Õ(dxdy) operations

in K. 2

Theorem 4 follows immediately from the previous proposition.

Proof of Theorem 5. We have by Proposition 7.1 that the number of absolutely irre-

ducible factors of F is equal to

r̄ = dimK̄ S̄ = dimK VK − dimK ZK

Given the dx + 1-truncated analytic factorization of F , we can compute dimK VK and

dimK ZK with the same costs as in the rational case, with the number of unknowns s

being replaced by s̄. The proof of Theorem 5 follows. �
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8. Non degenerate polynomials

We introduce here the P -adic Newton polytopes. These combinatorial objects give a
lot of interesting informations for both rational and analytic factorization. In particular,
we show here that they permit to detect a large class of polynomials whose separability
order is small.

Let us fix P ∈ K[y] a non constant polynomial. Any polynomial F ∈ K[[x]][y] can be
uniquely expanded as

F(x, y) =
∑

fijx
iP j ∈ K[[x]][y],

with fij ∈ K[y], deg fij < degP . Let

SuppP (F) :=
{

(i, j) ∈ N2, fij 6= 0
}

stands for the P -support of F . The P -adic Newton polytope of F , or P -polytope for
short, is the convex hull of the positive cone generated by the support of F , that is

NP,F := Conv
(

(SuppP (F) + (R+)2
)
.

When P = y we recover the usual notion of Newton polytope of a bivariate power
series [21], and we might simply say Newton polytope for the y-polytope. Take care that
the terminology of Newton polytope refers sometimes in the literature to the (compact)
convex hull of the support of a bivariate polynomial, which also provides many interesting
combinatorial restrictions on the factorization of F , see for instance [12, 13, 14, 34] and
the references therein. We have the following lemma.

Lemma 8.1. Let P ∈ K[y] be separable and irreducible and let α ∈ K̄ be a root of P .
Then, the P -polytope of F coincides with the Newton polytope of F(x, y + α).

Proof. Since P is irreducible and separable, the highest power of P that divides a given
f ∈ K[y] coincides with the highest power of y−α that divides f in K̄[y], which coincides
with the highest power of y that divides f(y + α). The Lemma follows. 2

We call the P -edges of F the compact edges of its P -polytope. Let Λ be a P -edge and
let aΛ and bΛ stand respectively for the distance from Λ to the y-axis and x-axis. We
define the P -edge polynomial of F associated to a Λ as

fP,Λ := x−aΛy−bΛ
∑

(i,j)∈Λ

f̄ijx
iyj ∈ KP [x, y].

where f̄ij ∈ KP := K[y]/(P ) stands for the reduction modulo P . By construction, the
polynomial fP,Λ is quasi-homogeneous and monic with respect to x and y. We say that
a series is P -convenient if it is not divisible by P or x.

Definition 8.2. We say that F ∈ K̄[[x]][y] is non P -degenerate if it is P -convenient and
if both P and all the P -edges polynomials of F are separable with respect to y. We say
that F is non degenerate at infinity if ydyF(1/y) is non y-degenerate. We say that F is
non degenerate if it is non P -degenerate for all irreducible factors P of F(0, y) and if it
is non degenerate at infinity.

Remark 8.3. By quasi-homogeneity, we can let x = 1 for checking separability of the
P -edge polynomials.
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Remark 8.4. Usually, the notion of non degenerate polynomials in K[[x]][y] only allows
ramification at the places y = 0 and y = ∞, while we consider here all places of P1

K. A
notable exception is [29] where the authors use collection of P -adic polytopes in order
to improve the usual Bernstein-Koushnirenko bound for the number of solutions of a
polynomial system with isolated roots.

Remark 8.5. In zero characteristic, non y-degeneracy is equivalent to the most common
definition of non degeneracy introduced by Kouchnirenko [21]. In positive characteristic,
there are several notion of non degeneracy. Kouchnirenko non degeneracy is equivalent
to that the edge polynomials are separable with respect to x and y. This is the one that
allows to generalize the Milnor formula to positive characteristic. Our notion is weaker
(for instance y3−x2 in characteristic 2). Weak non degeneracy introduced in [6], Section
3 is equivalent to that the edge polynomials are square-free. This is the one that allows
to compute the number of local factors. Our notion is stronger (for instance y3 − x2 in
characteristic 3).

Lemma 8.6. Let P ∈ K[y] be separable and irreducible. Then F is non P -degenerate if
and only if F(y + α) is non y-degenerate at any roots α of P .

Proof. Let α be a root of P and let us write F(y + α) =
∑
cijx

iyj for some cij ∈ K̄.
A straightforward computation shows that the coefficients in the two expressions are
related by

cij = P ′(α)jfij(α).

By Lemma 8.1, the y-edges of F(y + α) are one-to-one with the P -edges of F . Let Λ
be such an edge. The corresponding y-edge polynomial fy,Λ of F(y + α) and P -edge
polynomial fP,Λ of F are related by the formula

fy,Λ

(
x,

y

P ′(α)

)
= x−aΛy−bΛ

∑
(i,j)∈Λ

fij(α)xiyj = evα
(

fP,Λ
)
∈ K(α)[x, y].

where evα is induced be the isomorphism KP ' K(α) determined by α. Since the dis-
criminant of monic polynomials commutes with specialization, we deduce that fy,Λ is
separable with respect to y if and only if fP,Λ is. 2

Proposition 8.7. Suppose that F ∈ K[x, y] is non degenerate, then S = V (K̄).

Proof. Let as usual F = uF1 · · · Fs be the irreducible factorization of F in K[[x]][y].
By Corollary 3.5, it’s enough to prove that qi ≤ dx for all i. By point (2) in Lemma
3.1, the q-invariant of the irreducible factors of Fi in K̄[[x]][y] are all equal to qi. Hence,
there is no less to suppose that K = K̄. In such a case, Hensel lemma implies that we
necessarily have Fi(0, y) = (y − αi)di for some αi ∈ K̄. Since qi is invariant under the
Möbius transformations F ← F (x, y + αi) (or F ← ydyF (x, 1/y) for αi = ∞), we are
reduced to estimate qi when Fi(0, 0) = 0. Clearly, qi only depends on those factors Fj for
which Fj(0, 0) = 0 so that we can suppose that F ∈ K[x, y] is a product of Weierstrass
polynomials which by Lemma 8.6 is non y-degenerate. By the multiplicative property of
the resultant, we have

diqi = valx(Discy(Fi)) +
∑
j 6=i

valx Resy(Fi,Fj).
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For given two Weierstrass polynomials F ,G ∈ K[[x]][y], we have the formula

valx Resy(F ,G) = (F ,G)0

where (F ,G)0 stands for the intersection multiplicity

(F ,G)0 := dimK
K[[x, y]]

(F ,G)

of F and G at (0, 0), see for instance [32] p.28 (the proof adapts to the positive charac-
teristic case). Let us denote by

∆i := (R+)2 \NFi

the complementary set in (R+)2 of the Newton polytope of Fi. Note that ∆i is compact
since Fi is convenient by assumption. By Bernstein-Khovanskii-Kouchnirenko theorem,
we have the formula

(Fi,Fj)0 ≥ [∆i,∆j ],

with equality if the product FiFj is non y-degenerate (the converse holds in characteristic
zero). See for instance Corollary 5.6 in [8] in the case K = C or [21] for any algebraically
closed field. Here,

[∆i,∆j ] := Vol(∆i + ∆j)−Vol(∆i)−Vol(∆j)

stands for the mixed volume of polytopes. In the same way, we have that

(Fi, ∂yFi)0 ≥ [∆i,∆i]− dy,

with equality if Fi is non degenerate (see Theorem 5.6 in [8], the proof adapts to the
positive characteristic case since fΛ is assumed to be separable with respect to y). Since
all Fi’s are irreducible, it follows that ∆i is a triangle with vertices (0, 0), (ai, 0), (0, di)
where ai = valx(Fi(x, 0)) (with ai = 0 and ∆i being a segment if Fi does not depend on
x). In such a case, we get that

[∆i,∆j ] = min{diaj , djai},

see [8], Section 5. Hence it follows that

qidi ≤
s∑
j=1

diaj − dy = di valx F (x, 0)− dy ≤ didx − dy.

The inequality qi ≤ dx follows. 2

Let F ∈ K[x, y] and suppose given the irreducible factorization

F (0, y) =

t∏
i=1

Pnii ∈ K[y].

For each i, we denote by si the total number of irreducible rational factors of the Pi-edges
polynomials of F and by `i the lattice length of the Pi-boundary. Note the inequalities

si ≤ `i ≤ ni.

In the same way, denote by s∞ the total number of rational irreducible factors of the
edge polynomials of ydyF (x, 1/y) and by `∞ the lattice length of its Newton boundary.
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Lemma 8.8. Suppose given F ∈ K[x, y] primitive with respect to y and x. Then, the
respective numbers s and s̄ of irreducible analytic factors of F over K and K̄ satisfy

s ≤ sF :=

t∑
i=1

si + s∞ and s̄ ≤ s̄F :=

t∑
i=1

`i degPi + `∞,

both inequality being equalities if F is non degenerate along the fiber x = 0.

Proof. Suppose first F monic w.r.t y. By Hensel’s Lemma, the number of irreducible
factors of F in K[[x]][y] is the sum of the numbers of irreducible factors in the local
rings K[[x]][y](Pi) when Pi runs over the irreducible factors of F (0, y). Then the assertion
for s follows for instance from Chapter 6 in [7]. For the absolute case, we consider the
decomposition

K̄[[x]][y](Pi) =
⊕

P (α)=0

K̄[[x, y − α]].

By Lemma 4.10 in [6], the number of absolute factors of F in K̄[[x]][y](y−α) is bounded by
the lattice length of the Newton boundary of F (x, y+α), which by Lemma 8.1 coincides
with `i. Moreover, there is equality if F (x, y + α) is non y-degenerate, which is the case
when F is non degenerate by Lemma 8.6. Summing up over all the roots of Pi and over
all i, we get the result. If F is not monic, we conclude in the same way by taking also
into account the place at infinity. 2

Remark 8.9. Equalities s = sF and s̄ = s̄F hold in fact with the weaker hypothesis
that the edge polynomials are square-free.

Example 8.10. Suppose that

F (x, y) = y(y2 − 2)3 − x2(y2 − 2) + x5 ∈ Q[x, y].

Then F (0, y) = y(y2 − 2)2 has two irreducible coprime factors P1 = y and P2 = y2 − 2.
There is a unique P1-edge polynomial fΛ,P1 = −8y + 2x2, which is obviously separable
and irreducible. Hence s1 = `1 = 1. There are two P2-edge polynomials

f1 := φy2 − x2 and f2 := −y + x3

where φ ∈ QP2
stands for the residue class of y. Both polynomials are separable. Since φ

is not a square, f1 is irreducible over QP2
, but has two factors over Q̄. Obviously, f2 has

exactly 1 factor over any field. Hence s2 = 1 + 1 = 2 while `2 = 2 + 1 = 3. Since there
are no points at infinity, we finally get that F has exactly s = s1 + s2 = 3 irreducible
factors in Q[[x]][y] and s̄ = `1 + 2`2 = 7 irreducible factors in Q̄[[x]][y].

Example 8.11. Suppose that

F (x, y) = y6(y2 + 1)15 − x10(1 + y21) ∈ K[x, y],

where K is any field of characteristic p 6= 2. Then

F (0, y) = y6(y2 + 1)15

has only two distinct irreducible factors P1 = y and P2 = y2 + 1. There is a unique P1-
edge polynomial fΛ,P1

= y6−x10. It is separable with respect to y if and only if p 6= 2, 3,
and we have s1 = `1 = 2 if p 6= 2. There is a unique P2-edge polynomial

fΛ,P2
= φ6y15 − x10(1 + φ21) = −y15 + (1 + φ)x10,
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where φ stands for the residue class of y in KP2
= K[y]/(y2 + 1). This polynomial is

separable if and only if p 6= 2, 3, 5 and it is square-free if and only if p 6= 2. For p 6= 2, 3, 5,
it has s2 = 2 irreducible factors over KP2

while the lattice length of Λ is `2 = 5. Hence,
if p 6= 2, 3, 5, then F is non degenerate and has s = s1 + s2 = 4 factors in K[[x]][y] and
s̄ = `1 + 2`2 = 12 factors in K̄[[x]][y].

Corollary 8.12. There is a deterministic algorithm that, given F ∈ K[x, y], returns
False if F is degenerate and returns the irreducible factors of F over K otherwise. The
cost of this algorithm is one univariate factorization of degree at most dy and

O(dxdys
ω−1
F ) + C(dx, dy)

operations over K if p > dx(2dy − 1) or

O(kdxdys
ω−1
F ) +O(k)C(dx, dy)

operations over Fp if K = Fpk .

Proof. The algorithm is as follows. We first compute the factorization F (0, y) =
∏t
i=1 P

ni
i .

For each i, we test the separability of Pi and of all the Pi-edges polynomials of F . This
step costs at most O(dxdy) operations over K. If F is non degenerate along the fiber
x = 0, then s = sF by Lemma 8.8 and the separability order satisfies N ≤ dx by
Proposition 8.7. Hence we can take q = dx in Theorem 1. Corollary 8.12 follows. 2

Remark 8.13. Analytic factorization of non degenerate polynomials may be reduced to
Newton iteration in the rings KP [[x]][y] after some translations and monomial change of
coordinates. A first estimate leads in that case to C(dx, dy) ⊂ O(sF dxd

2
y), but we believe

we can do better. One of the main obstruction is the difficulty to use a dichotomic
multi-factor Hensel lifting as in the regular case.

Remark 8.14. A cheap pretreatment of F is to look at the fibers x = 0 and x =∞ (or
y = 0 and y = ∞ by reversing the roles played by x and y) in order to check if there is
a fiber over which F is non degenerate and with the smallest sF or s̄F as possible. If we
take for instance F (x, y) = y6(y−1)15−x10 +x9y21, then the fiber x = 0 leads to sF = 4
and s̄F = 7 while the fiber x = ∞ would lead to s = s̄ = 1 from which we immediately
deduce that F is absolutely irreducible, whatever the field is. This kind of strategies
based on the relations between the (global) Newton polytope and bivariate factorization
have already been considered in the literature, see for instance [12, 13, 14, 34] and the
references therein.

9. Conclusion

When compared to the regular case, a great advantage of working along a critical
fiber for factorization is that one has in general less analytic factors to recombine (always
strictly less in the absolute case K = K̄). Unfortunately, this might require in general a
higher truncated precision, and our main Theorem 3 seems to suggest a bad worst case
complexity. However, the important classes of non degenerate polynomials and locally
irreducible polynomials illustrate that we sometimes gain in complexity when compared
to the regular case. Might this hold in all generality ? We discuss briefly the two main
obstructions for this.
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9.1. Fast analytic factorization ?

The strength of our approach deeply relies on the complexity of N -truncated analytic
factorization. This is a crucial problem in singularity theory. One approach in charac-
teristic zero or > dy is to compute the rational Puiseux series. There are well known
algorithms for this. Thanks to the recent paper [28], this can be done with complexity
O(d4) in terms of the total degree d of F in the case of finite fields. This has to be
compared to the complexity of absolute factorization. In order to fit also in the rational
factorization complexity class, we would need O(dω+1) for analytic factorization. This is
an open problem.

Note that there exists algorithms for testing local analytic irreducibility of a germ
of curve that do not require the use of Puiseux series. The main ingredient is that of
approximate roots and uses essentially resultants computations [1], [23], [10]. Up to our
knowledge, no complexity analysis have been done yet.

In characteristic p < dy, the concept of Puiseux series does not make sense and analytic
factorization is a much more delicate problem. See for instance [19] for the generalization
of Puiseux series in small positive characteristic.

9.2. Fast recombinations ?

Even if we get a fast algorithm for computing the N -truncated analytic factors, our
brute force analysis of the recombination problem in this paper led to a complexity

O(Ndyr
ω−2) ⊂ O(dω+2). However, the polynomials

[
F̂i∂yFi

]N+1
we want to recombine

have a very particular structure. Namely, they vanish with very high order at some points
of the curve F = 0. An approach could be to write these polynomials in a basis constituted
of adjoint polynomials. The number of required equations for solving recombinations
(divisibility test by F or closeness of differential forms) would then decrease. This fact
is illustrated in some of our previous works, where we studied the relations between
resolution of singularities and factorization [35] or toric geometry and factorization [34].
Namely we developed factorization algorithms whose linear algebra steps belongs to
O(pas

ω−1), with pa ≤ d2 being the arithmetic genus of the strict transform of the curve
F = 0 after some sequences of blowing-ups.
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[9] Chèze G. and Lecerf G., Lifting and recombination techniques for absolute factor-
ization, J. of Complexity 23, no. 3 (2007), 380-420.

[10] Cossart V., Moreno-Socas G., Irreducibility criterion: a geometric point of view,
Valuation theory and its applications II, Fields Inst. Commun., 33, Amer. Math.
Soc., Providence, RI (2003) 27-42.

[11] Gao S., Factoring multivariate polynomials via partial differential equations, Math.
Comp. 72 (2003), 801-822.

[12] Gao, S., Absolute Irreducibility of Polynomials via Newton polytopes, Journal of
Algebra 237, Issue 2 (2001), 501-520.

[13] Gao S., Lauder A.G.B., Decomposition of polytopes and polynomials, Discrete Com-
put. Geom. 26 (2001), 89-104.

[14] Gao S., Rodrigues V. M., Irreducibility of polynomials modulo p via Newton Poly-
topes, J. Number Theory 101 (2003), 32-47.

[15] Gathen J., Irreducibility of multivariate polynomials, Journal of Computer and Sys-
tem Sciences 31 (1985), 225-264.

[16] Gathen J., Gerhard J., Modern computer algebra, second ed., Cambridge University
Press, Cambridge, MA, (2003).

[17] Kaltofen E., Polynomial factorization 1982-1986, Lect. Notes in Pure and Applied
Math. 125 (1990), 285-309.

[18] Kaltofen E., Polynomial factorization 1987-1991, Lect. Notes Comput. Sci. 583
(1992), 294-313.

[19] Kedlaya K., The algebraic closure of the power series field in positive characteristic.
Proc. Amer. Math. Soc. 129, no. 12 (2001), 3461-3470.

[20] Khovanski A.G., The index of polynomial vector field (Russian), Funkt. Anal. Prloz.
13, no. 1 (1979), 49-58.
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