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ABSTRACT. We give lower bounds for the degree of the
discriminant with respect to y of squarefree polynomials
f ∈ K[x, y] over an algebraically closed field of characteris-
tic zero. Depending on the invariants involved in the lower
bound, we give a geometrical characterization of those poly-
nomials having minimal discriminant, and give an explicit
construction of all such polynomials in many cases. In par-
ticular, we show that irreducible monic polynomials with
minimal discriminant coincide with coordinate polynomials.
We obtain analogous partial results for the case of nonmonic
or reducible polynomials by studying their GL2(K[x])–orbit
and by establishing some combinatorial constraints on their
Newton polytope. Our results suggest some natural exten-
sions of the embedding line theorem of Abhyankar-Moh and
of the Nagata-Coolidge problem to the case of unicuspidal
curves of P1 × P1.

1. Introduction. Let f ∈ K[x, y] be a bivariate polynomial defined
over an algebraically closed field K of characteristic zero. We denote
by dx and dy the respective partial degrees of f with respect to x and
y. The discriminant ∆y(f) of f with respect to y is the polynomial

∆y(f) :=
(−1)dy(dy−1)/2

lcy(f)
Resy(f, ∂yf) ∈ K[x],

where ∂yf and lcy(f) respectively stand for the partial derivative and
the leading coefficient of f with respect to y and Resy stands for the
resultant with respect to y. In this note, we study polynomials with
discriminants of low degrees. More precisely, we focus on the following
problem:

Problem 1.1. Give a lower bound for the degree of the discriminant
in terms of some invariants attached to f and construct all polynomials
whose discriminant reaches this lower bound.
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Throughout the paper, we assume that f is primitive (with respect to
y), that is f has no factor in K[x]. This hypothesis is not restrictive for
our purpose thanks to the well known formula ∆y(uf) = u2dy−2∆y(f)
when u ∈ K[x]. We also assume that f is squarefree with respect to y
in order to avoid zero discriminants.

1.1. The case of monic polynomials. We recall that a polynomial
f ∈ K[x, y] is monic with respect to y if its leading coefficient with
respect to y is 1.

Theorem 1.2. Let f ∈ K[x, y] be a primitive squarefree polynomial
with r irreducible factors. Then

degx ∆y(f) ≥ dy − r.

If moreover f is monic, then the equality holds if and only if there exists
a polynomial automorphism σ = (σx, σy) ∈ Aut(A2) and a degree r
polynomial g ∈ K[y] such that f = g ◦ σy.

Since the group Aut(A2) of automorphisms of A2 is generated by
affine and elementary automorphisms thanks to Jung’s Theorem [11],
Theorem 1.2 gives a solution of Problem 1.1 for monic polynomials in
terms of dy and r. Moreover, given f monic for which the equality holds,
we can compute the automorphism σ recursively from the Newton
polytope of any irreducible factor of f (remark after Proposition 4.12).

Theorem 1.2 implies in particular that if f is monic and satisfies
degx ∆y(f) = dy − r, then r divides dy. Hence, either its discriminant
is constant, or it satisfies the inequality

degx ∆y(f) ≥
⌈dy − 1

2

⌉
.

It turns out that this fact is still true for nonmonic polynomials, and
we have moreover a complete classification of polynomials for which
equality holds, solving Problem 1.1 in terms of the degree dy. The
precise result requires some more notation and will be stated later in
this introduction (Theorem 1.7).

Thanks to the multiplicative property of the discriminant,

∆y(fg) = ±∆y(f)∆y(g) Res(f, g)2
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the inequality in Theorem 1.2 is equivalent to the fact that any irre-
ducible polynomial satisfies the inequality

degx ∆y(f) ≥ dy − 1.

A similar lower bound for irreducible polynomials appears in [5,
Prop. 1], under the additional assumption that deg f = dy. The second
part of Theorem 1.2 for r = 1 has to be compared with [10, Thm. 4],
where the authors show that if dy coincides with the total degree of f ,
then f is a coordinate of C2 if and only if f is a Jacobian polynomial
such that degx ∆y(f) = dy − 1. Our result allows to replace the Jaco-
bian hypothesis by irreducibility. Note further that being monic is a
weaker condition than deg f = dy.

1.2. Bounds with respect to the genus. If now we take into
account the genus g and the degree dy of f , we can refine the lower
bound dy − 1 for irreducible polynomials:

Theorem 1.3. Let f ∈ K[x, y] be a primitive irreducible polynomial.
Then

2g + dy − 1 ≤ degx ∆y(f) ≤ 2dx(dy − 1),

where g stands for the geometric genus of the algebraic curve defined
by f . Moreover, the equality

degx ∆y(f) = 2g + dy − 1

holds if and only if the Zariski closure C ⊂ P1 × P1 of the affine curve
f = 0 is a genus g curve with a unique place supported on the line
x =∞ and smooth outside this place.

Theorem 1.2 is mainly a consequence of Theorem 1.3 combined
with the embedding line theorem of Abhyankar-Moh [2] that asserts
that every embedding of the line in the affine plane A2 extends to
a polynomial automorphism of the plane. In particular, it appears
the remarkable fact that a monic irreducible polynomial with minimal
discriminant with respect to y is also monic with minimal discriminant
with respect to x (Theorem 3.3).

Remark 1.4. Our results are specific to fields of characteristic zero.
For instance, if K has characteristic p, the polynomial f(x, y) =
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yp + yk + x is irreducible and satisfies

degx ∆y(f) = k − 1, ∀ 1 ≤ k < p.

Hence, there is no nontrivial lower bound for the degree of the discrim-
inant if we do not take some care on the degree.

1.3. G-reduction of (nonmonic) minimal polynomials. We say
that f ∈ K[x, y] is minimal if it is irreducible and if its discriminant
reaches the lower bound

degx ∆y(f) = dy − 1.

Theorem 1.2 characterizes monic minimal polynomials: they coincide
with coordinate polynomials, that is polynomials that form part of
a Hilbert basis of the K-algebra K[x, y]. In the nonmonic case, the
characterization of minimal polynomials is more complicated. Indeed,
the second part of Theorem 1.2 is false in general since Aut(A2)
does not preserve minimality of nonmonic polynomials. An idea is to
introduce other group actions in order to reduce minimal polynomials
to a ”canonical form”. Since the discriminant of f coincides with
the discriminant of its homogenization F with respect to y, we may
try to apply a reduction process to F . The multiplicative group
G := GL2(K[x]) acts on the space K[x][Y ] of homogeneous forms in
Y = (Y0 : Y1) with coefficients in K[x] by

(1)

(
a b
c d

)
(F ) = F (aY0 + bY1, cY0 + dY1).

The partial degree dY of F , the number r of irreducible factors and the
degree of the discriminant are G-invariant (see Section 2). The group
G is thus a good candidate for reducing nonmonic polynomials with
small discriminant to a simpler form, in the same vein as in Theorem
1.2.

We say that F,H ∈ K[x][Y ] are G–equivalent, denoted by F ≡ H,
if there exists σ ∈ G such that F = σ(H). The action (1) induces
by dehomogenization a well defined action on the set of irreducible
polynomials in K[x, y] with dy > 1, and more generally on the set of
polynomials with no linear factors in y. In particular, we can talk
about G–equivalence of (affine) minimal polynomials of degree dy > 1.
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TheG-orbit of a monic minimal polynomial contains many nonmonic
minimal polynomials and it is natural to ask if all nonmonic minimal
polynomials arise in such a way. We prove that the answer is no in
general thanks to the following counterexample.

Theorem 1.5. Let λ ∈ K∗. The polynomial f = x(x− y2)2− 2λy(x−
y2) + λ2 is minimal but is not G–equivalent to a monic polynomial.

This result will follow as a corollary of the G-reduction Theorem 4.3
which shows in particular that if the degree c of the leading coefficient
of a minimal polynomial is not the smallest in the G-orbit, then dy
necessarily divides dx − c. The proof is in the spirit of Wightwick’s
results [18] about orbits of Aut(C2). Although we can guess that this
example is not unique, we were not able to find a single other such
example despite a long computer search (see Subsection B). Indeed,
it turns out that being simultaneously minimal and G-reduced still
imposes divisibility restrictions on the partial degrees. In particular,
we can show that all minimal polynomials of prime degree dy are G–
equivalent to a monic polynomial, solving Problem 1.1 in that context.
More precisely:

Theorem 1.6. Let f be a minimal polynomial of prime degree dy.
Then there exists g ∈ K[y] of degree dy such that

f(x, y) ≡ g(y) + x.

In particular, f is G–equivalent to a monic polynomial, hence to a
coordinate polynomial.

Theorem 1.6 follows from the fact that minimality implies that either
dy divides dx−c or dx−c and dy are not coprime except for some trivial
cases (Theorem 4.14). The proof relies on a suitable toric embedding
of the curve of f . It is natural to ask whether minimality implies the
stronger fact that either dy divides dx − c or dx − c divides dy. This
property holds for c = 0, a statement equivalent to the Abhyankar-Moh
Theorem [1]. In general, we need to study the singularity of smooth
rational curves of A1×P1 with a unique place along∞×P1, generalizing
the Abhyankar-Moh situation of smooth rational curves of A2 with a
unique place at the infinity of P2.
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1.4. Cremona equivalence of minimal polynomials. In a close
context, we can pay attention to Cremona reduction of minimal poly-
nomials. Theorem 1.5 shows that it is hopeless to reduce a nonmonic
minimal polynomial to a coordinate by applying successivelyGL2(K[x])
and Aut(A2). However, both groups can be considered as subgroups of
the Cremona group Bir(A2) of birational transformations of the plane
and our results suggest to ask whether all minimal polynomials define
curves that are Cremona equivalent to a line. We will prove for in-
stance that the nonmonic minimal polynomial in Theorem 1.5 satisfies
this property (Proposition 4.11). This open problem can be seen as
a generalization of the Coolidge-Nagata problem [13] to unicuspidal
curves of P1 × P1.

1.5. A uniform lower bound for reducible polynomials. Our
last result gives a uniform sharp lower bound for the degree of the dis-
criminant of any squarefree (reducible) polynomial that depends only
on dy. Moreover it establishes a complete classification of polynomi-
als that reach this lower bound. We need to express this classification
in homogeneous coordinates, and we let F ∈ K[x][Y ] stands for the
homogeneous form associated to f of degree degY F = dy.

Theorem 1.7. Let f ∈ K[x, y] be a primitive and squarefree polyno-
mial. Then f has constant discriminant if and only if F ≡ H for some
H ∈ K[Y ]. Otherwise, we have the inequality

degx ∆y(f) ≥
⌈dy − 1

2

⌉
and the equality holds if and only if one of the following conditions
holds:

(1) dy = 4 and F ≡ Y0Y1(Y 2
0 + (µx+λ)Y0Y1 +Y 2

1 ), with µ, λ ∈ K,
µ 6= 0.

(2) dy = 4 and F ≡ Y1(H(Y ) + xY 3
1 ), for some cubic form

H ∈ K[Y ].
(3) dy is odd and F ≡ Y1H(Y 2

0 + xY 2
1 , Y

2
1 ) for some form H ∈

K[Y ].
(4) dy is even and F ≡ H(Y 2

0 +xY 2
1 , Y

2
1 ) for some form H ∈ K[Y ].
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1.6. Organization of the paper. We prove Theorem 1.3 in Section
2. The proof is based on the classical relations between the valuation
of the discriminant and the Milnor numbers of the curve along the
corresponding critical fiber. We prove Theorem 1.2 in Section 3, the
main ingredients of the proof being Theorem 1.3 combined with the
embedding line theorem of Abhyankar-Moh. In particular, we show
that for a monic polynomial, minimality with respect to y is equivalent
to minimality with respect to x (Theorem 3.3). In Section 4, we
focus on the GL2(K[x])-orbits of nonmonic minimal polynomials. We
first characterize minimal polynomials that minimize the area of the
Newton polytope in their orbit (Subsection 4.1, Theorem 4.3). The
counterexample of Theorem 1.5 follows as a corollary. Although this
example is not G–equivalent to a coordinate, we show in Subsection
4.2 that it defines a curve Cremona equivalent to a line and we address
the question if this property holds for all minimal polynomials. In
a close context, we show in Subsection 4.3 that the partial degrees
of minimal polynomials obey to some strong divisibility constraints
(Theorem 4.14). Theorem 1.6 follows as a corollary. At last, we prove
Theorem 1.7 in Section 5. The paper finishes with two appendices on
related problems. In Appendix A, we study the relations between small
discriminants with respect to x and small discriminants with respect
to y, extending Theorem 3.3 to the nonmonic case. In Appendix B, we
give a parametric characterization of minimal polynomials and apply
our result to the Computer Algebra challenge of computing nonmonic
minimal polynomials.

2. Bounds for the degree of the discriminant. Proof of The-
orem 1.3. The upper bound in Theorem 1.3 for the degree of the
discriminant follows from classical results about the partial degrees of
discriminants of homogeneous forms with indeterminate coefficients.
The lower bound follows by studying the relations between the van-
ishing order of the discriminant at infinity and the singularities of the
curve of f .

We recall that in all of the sequel, f is assumed to be primitive,
hence with no factors in K[x]. This assumption is not restrictive for
our purpose thanks to the well known formula ∆y(uf) = u2dy−2∆y(f)
when u ∈ K[x].
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2.1. Bihomogenization. Let X = (X0, X1) and Y = (Y0, Y1) be two
pairs of variables and let F ∈ K[X,Y ] be the bihomogenized polynomial
of f

F := Xdx
1 Y

dy
1 f

(X0

X1
,
Y0
Y1

)
.

It is homogeneous of degree dX = dx in X and of degree dY = dy in Y .
We define the discriminant of F with respect to Y by

∆Y (F ) :=
(−1)dY (dY −1)/2

ddY −2Y

ResY (∂Y0
F, ∂Y1

F ).

In the litterature, several normalizations exist concerning the sign of
this discriminant, however these considerations have no impact here,
where we are only interested in its degree. The present normalization
satisfies the relation

∆Y (F )(x, 1) = ∆y(f)(x).

The polynomial ∆Y (F ) is homogeneous of degree 2dy − 2 in the
coefficients of F which vanishes if and only if F is not squarefree with
respect to Y . In our situation, it follows that ∆Y (F ) is a homogeneous
polynomial in X of total degree

degX ∆Y (F ) = 2dX(dY − 1) = 2dx(dy − 1).

We get the following relation

degx ∆y(f) = degX ∆Y (F )− ord∞∆Y (F )

where ord∞ stands for the vanishing order at ∞ := (1 : 0) ∈ P1. The
upper bound in Theorem 1.3 follows. In order to get the lower bound,
one needs an upper bound for ord∞∆Y (F ). Let

C ⊂ P1 × P1

be the curve F = 0. It coincides by construction with the Zariski
closure of the affine curve f = 0 in the product of projective spaces
P1 × P1. For a point α ∈ P1 we denote by

Zα := C ∩ (X = α)

the set theoretical intersection of C with the ”vertical line” X = α. It
is zero-dimensional since otherwise F would have a linear factor in X,
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contradicting the primitivity assumption on f . Moreover, we have

Card(Zα) ≤ dY ,

with strict inequality if and only if ∆Y (F )(α) = 0, that is if and only if
F (α, Y ) is not squarefree. In order to understand the order of vanishing
of ∆Y (F ) at α, we need to introduce some classical local invariants of
the curve C.

2.2. The ramification number. Let p ∈ C. A branch of C at p is
an irreducible analytic component of the germ of curve (C, p).

Definition 2.1. The ramification number of C over α ∈ P1 is defined
as

rα := dy −
∑
p∈Zα

np,

where np stands for the number of branches of C at p.

In other words, the ramification number measures the defect to the
expected number dY of branches of C along the vertical line X = α. It
is also equal to the sum

∑
(eβ − 1) over all places β of C over α, where

eβ stands for the ramification index of β.

2.3. The delta invariant. Let B be a branch. The local ring OB
has finite index in its integral closure ŌB . The quotient ring is a finite
dimensional vector space over K whose dimension

δ(B) := dimK ŌB/OB

is called the delta invariant of B. More generally, we define the delta
invariant of C at p as the nonnegative integer

δp(C) :=
∑
i

δp(Bi) +
∑
i<j

(Bi ·Bj)p

where the Bi’s run over the branches of C at p and where (Bi · Bj)p
stands for the intersection multiplicity at p of the curves Bi and Bj . In
some sense, the delta invariant δp(C) measures the complexity of the
singularity of C at p. In particular, we have δp(C) = 0 if and only if C
is smooth at p.
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Definition 2.2. The delta invariant of C over α ∈ P1 is

δα :=
∑
p∈Zα

δp(C).

The integer δα thus measures the complexity of all singularities of
C that lie over α.

2.4. PSL2-invariance of the discriminant. The multiplicative group
GL2(K[x]) of 2×2 invertible matrices with coefficients in K[x] acts nat-
urally on the space K[x][Y ] of homogeneous forms in Y = (Y0 : Y1) with
coefficients in K[x] by

(2)

(
a b
c d

)
(F ) = F (aY0 + bY1, cY0 + dY1)

This action preserves the degree in Y and for τ ∈ GL2(K[x]), we have

(3) ∆Y (τ(F )) = det(τ)dY (dY −1)∆Y (F ),

so that the discriminant is PSL2(K[x])-invariant and the degree of
the discriminant is GL2(K[x])-invariant. This action also preserves the
irreducibility. It induces by dehomogenization a well defined action on
the set of irreducible polynomials in K[x, y] with dy > 1, and more
generally on the set of polynomials with no linear factors in y. The
corresponding formula is

(4)

(
a b
c d

)
(f) = (cy + d)dyf

(
x,
ay + b

cy + d

)
.

We will study in more details the action of GL2(K[x]) in Section 4.1.

2.5. Vanishing order of the discriminant. For α = (α0 : α1) ∈ P1

and H ∈ K[X0 : X1] a homogeneous form, the vanishing order ordαH
of H at α is the highest power of α0X1 − α1X0 that divides H.
The vanishing order at α 6= ∞ coincides with the usual valuation
of the dehomogenization of H at x − α. The vanishing order of the
discriminant is related to the ramification degree and the delta invariant
thanks to the following key proposition:
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Proposition 2.3. Let α ∈ P1 and F ∈ K[X,Y ] a bihomogeneous form
with no factors in K[X]. We have the equality

ordα ∆Y (F ) = rα + 2δα.

In particular, we have

degx ∆y(f) = 2dx(dy − 1)− 2δ∞ − r∞.

Proof. Up to a change of coordinates of P1, and without loss of
generality, we can assume that α = (0 : 1) and we will write simply
ord0 for ord(0:1). Note first that ord0 ∆Y (F ) = ord0 ∆y(f). Since K
has infinite cardinality, there exists β ∈ K such that f(0, β) 6= 0. For
such a β, the leading coefficient with respect to y of the transformed
polynomial ydyf(x, β + 1/y) is a unit modulo x. Since by (3) the
discriminant is invariant under PSL2(K), we can thus assume that the
leading coefficient of f with respect to y is a unit modulo x, meaning
that the point (0,∞) does not belong to C. In such a case, Hensel’s
lemma ensures that we have a unique factorization

f = u
∏
p∈Z0

fp ∈ K[[x]][y]

where u ∈ K[[x]] is a unit and where fp ∈ K[[x]][y] is a monic polynomial
giving the equation of the germ of curve (C, p). Note that fp is
not necessary irreducible. By the well known multiplicative relations
between discriminants and resultants, we have

∆y(f) = ±u2dy−2
∏
p∈Z0

∆fp

∏
p 6=q

Resy(fp, fq)
2

where Resy stands for the resultant with respect to y. The roots
of fp(0, y) and fq(0, y) are distinct by assumption so the resultant
Res(fp, fq) is a unit in K[[x]]. Hence,

ord0 ∆y(f) =
∑
p∈Z0

ord0 ∆y(fp).

The polynomial fp is monic with respect to y − yp and f(0, y) =
(y−yp)dp , where dp stands for the degree in y of fp. Such a polynomial
is said to be distinguished with respect to y − yp (or a Weierstrass
polynomial) and has the property that

ord0 ∆y(fp) = (C · Cy)p,
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where Cy stands for the polar curve ∂yf = 0. Now by Teissier’s Lemma
[16, Chap. II, Prop. 1.2], we have

(C · Cy)p = µp(C) + dp − 1

where µp stands for the Milnor number of C at p, that is

µp(C) := (Cx · Cy)p,

with Cx the polar curve ∂xf = 0. The Milnor number and the delta
invariant of a germ of curve are related by the Milnor-Jung formula
[17, Thm. 6.5.9]

µp(C) = 2δp(C)− np(C) + 1,

where np(C) stands for the number of branches of C at p. Finally, we
get:

ord0 ∆y(f) =
∑
p∈Z0

(2δp(C)− np(C) + dp)

Proposition 2.3 then follows from equality
∑
p dp = dy. �

2.6. Adjunction formula. Let C be an irreducible algebraic curve
on a smooth complete algebraic surface. We denote by pa(C) =

dimH0(C,ΩC) the arithmetic genus of C and by g(C) = dimH0(C̃,ΩC̃)
its geometric genus, where ΩC and ΩC̃ stand respectively for the canon-

ical sheaves of C and of its normalization C̃. The adjunction formula
measures the difference between both integers, namely

(5) pa(C) = g(C) +
∑

p∈Sing(C)

δp(C),

see for instance [3, Sec. 2.11]. This formula generalizes the famous
Plücker formula that computes the geometric genus of a projective
plane curve with ordinary singularities. We deduce the following bound
for the valuation of the discriminant:

Proposition 2.4. Let α ∈ P1 and F ∈ K[X,Y ] an irreducible biho-
mogeneous polynomial of partial degree dY > 0. Let g be the geometric
genus of the curve C ⊂ P1×P1 defined by F = 0. We have the inequal-
ity

ordα ∆Y (F ) ≤ (2dX − 1)(dY − 1)− 2g.
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Moreover, equality holds if and only if C has a unique place on the line
X = α and is smooth outside this place.

Proof. Since C has at least one branch along the line X = α, the
ramification number rα is bounded above by dy−1. Hence Proposition
2.3 implies that

ordα ∆Y (F ) ≤ 2
∑

p∈Sing(C)

δp(C) + dy − 1.

It is well known that a curve C ⊂ P1×P1 defined by a bihomogeneous
polynomial of bidegree (dx, dy) has arithmetic genus

pa(C) = (dx − 1)(dy − 1)

(see for instance [8], Section 4.4). The upper bound of Proposition
2.4 then follows from the adjunction formula (5). Equality holds in
Proposition 2.4 if and only if both invariants δα and rα are maximal
once the genus is fixed. This is equivalent to the equalities

δα =
∑

p∈Sing(C)

δp(C) and rα = dy − 1.

The first equality is equivalent to δβ = 0 for all β 6= α, meaning
geometrically that C is smooth outside the line X = α. The second
equality is equivalent to the fact that C has a unique branch along this
line. �

Proof of Theorem 1.3. Theorem 1.3 follows by combining the
equality

degx ∆y(f) = degX ∆Y (F )− ord∞∆Y (F )

with the inequality of Proposition 2.4. �

Corollary 2.5. Let f ∈ K[x, y] be an irreducible polynomial of partial
degree dy > 0. Then

degx ∆y(f) ≥ dy − 1

and equality holds if and only if the curve C ⊂ P1×P1 is rational, with
a unique place over the line x =∞, and smooth outside this place.
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2.7. Almost minimal discriminants. Thanks to a parity reason,
we can give also a geometrical characterization of polynomials with
”almost minimal” discriminant, that is for which equality degx ∆(f) =
dy holds.

Corollary 2.6. Let f ∈ K[x, y] be irreducible. Then equality

degx ∆y(f) = dy

holds if and only if the closed curve C ⊂ P1×P1 defined by f is rational,
with two places over the line x =∞ and smooth outside these places.

Proof. By Proposition 2.3, we have degx ∆y(f) = dy if and only if

dy = 2dx(dy − 1)− 2δ∞ − r∞.

Since δ∞ ≤ (dx − 1)(dy − 1) by the adjunction formula, it follows
that r∞ ≥ dy − 2. But we have r∞ ≤ dy − 1 and equality can not
hold for a parity reason. Hence the only solution is r∞ = dy − 2 and
δ∞ = (dx − 1)(dy − 1). This exactly means that C is rational with two
places over the line x =∞ and smooth outside these two places. �

3. Classification of minimal monic polynomials. Proof of
Theorem 1.2.

Definition 3.1. We say that f ∈ K[x, y] is minimal (with respect to
y) if it is irreducible and satisfies the equality degx ∆y(f) = dy − 1.

Definition 3.2. We say that f ∈ K[x, y] is monic with respect to y
(resp. to x) if its leading coefficient with respect to y (resp. to x) is
constant. Take care that in the literature, this terminology often refers
to polynomials with leading coefficient equal to 1.

3.1. Characterization of monic minimal polynomial.

Theorem 3.3. Let f ∈ K[x, y] be a nonconstant irreducible bivariate
polynomial. The following assertions are equivalent:

(a) dy = 0, or degx ∆y(f) = dy − 1 and f is monic with respect to y.
(b) dx = 0, or degy ∆x(f) = dx − 1 and f is monic with respect to x.
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(c) The affine curve f = 0 is smooth rational, and has a unique place
at infinity of P2.

(d) There exists σ ∈ Aut(A2) such that f ◦ σ = y.

Thanks to Jung’s Theorem [11], we have an explicit description
of the group Aut(A2) of polynomial automorphisms of the plane.
Namely, it is generated by the transformations (x, y) → (y, x) and
(x, y) → (x, λy + p(x)) with λ ∈ K∗ and p ∈ K[x]. Hence Theorem
3.3 gives a complete and explicit description of all minimal monic
polynomials. Note the remarkable fact that for monic polynomials,
minimality with respect to y is equivalent to minimality with respect
to x. This symmetry can be extended to nonmonic polynomials by
taking into account the number of roots of the leading coefficients, see
Appendix A.

Proof. (a) ⇒ (b). If dx = 0, the assertion is trivial. If dy = 0 then
by the irreducibility assumption, we have f = ax + b for some a ∈ K∗
and b ∈ K so that (b) trivially holds too. Suppose now that dy > 0
and dx > 0. By Theorem 1.3, the curve C ⊂ P1 × P1 defined by f has
a unique place p on the line x = ∞ and is smooth outside this place.
Since f is supposed to be monic with respect to y and dx > 0, the
curve C intersects the line y = ∞ at the unique point (∞,∞). This
forces equality p = (∞,∞). Hence C is rational with a unique place
over the line y =∞ and smooth outside this line. Thus f has minimal
discriminant with respect to x by Theorem 1.3. Since C has a unique
place on the divisor at infinity B := P1×P1 \A2, usual arguments (see
Lemma 4.2) ensure that the Newton polytope of f has an edge that
connects the points (dx, 0) and (0, dy). In particular, f is necessarily
monic with respect to x.

(b)⇒ (a). Follows by the symmetric roles played by the variables x
and y.

(a) ⇔ (c). If dy = 0 or dx = 0, then the result is trivial. Suppose
now that dx and dy are positive. We just saw that this is equivalent to
the fact that C is rational, with (∞,∞) as unique place on the divisor
at infinity B := P1×P1 \A2 and smooth outside this place. The result
then follows from the fact that the number of places at the infinity of
P2 is equal to the number of places on the boundary B of P1 × P1.
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(c) ⇔ (d) This is an immediate consequence of the embedding line
theorem [2] (see also [15]). �

3.2. The monic reducible case. Proof of Theorem 1.2.

Proposition 3.4. Let g, h ∈ K[x, y] be two monic minimal polynomi-
als. Then

Resy(g, h) ∈ K∗ ⇐⇒ h = µg + λ

for some nonzero constants µ, λ ∈ K∗.

Proof. We have Resy(g, h) ∈ K∗ if and only if the curves C1, C2 ⊂
P1 × P1 respectively defined by g and h do not intersect in the open
set A1 × P1. Let σ ∈ Aut(A2) and let g̃ = g ◦ σ and h̃ = h ◦ σ. Assume
that degy g̃ > 0. Since g is assumed to be monic minimal, so is g̃ by

Theorem 3.3. It follows that the respective curves C̃1 and C̃2 of g̃ and
h̃ do not intersect in A1 × {∞}. Since C1 and C2 do not intersect in

A2 by assumption, the curves C̃1 and C̃2 can not intersect in A2 since
σ is an automorphism of the plane. Hence C̃1 and C̃2 do not intersect
in A1 × P1, that is

(6) Resy(g̃, h̃) ∈ K∗.

By Theorem 3.3, there exists σ ∈ Aut(A2) such that g̃ = y. Combined

with (6), this implies that h̃(x, 0) ∈ K∗. Since h̃ is a coordinate

polynomial by Theorem 3.3, it is irreducible, as well as h̃(x, y)−h̃(x, 0),

forcing the equality degyh̃ = 1. Since h is monic, so is h̃ and the

condition h̃(x, 0) ∈ K∗ implies that h̃ = µy + λ = µg̃ + λ for some
constant µ, λ ∈ K∗. The result follows by applying σ−1. �

Proof of Theorem 1.2. Let f be a monic squarefree polynomial with r
irreducible factors f1, . . . , fr of respective degrees d1, . . . , dr. Corollary
2.5 combined with the multiplicative properties of the discriminant
gives the inequality

degy(∆y(f)) =

r∑
i=1

degy(∆y(fi))+

r∑
i6=j

degy(Resy(fi, fj)) ≥
r∑
i=1

(di−1) ≥ dy−r.

Moreover, equality holds if and only if all factors fi are minimal and
satisfy Resy(fi, fj) ∈ K∗ for all i 6= j. If f is monic, all its factors are
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also monic. We conclude thanks to Theorem 3.3 and Proposition 3.4
that there exists an automorphism σ ∈ Aut(K2) such that f ◦ σ is a
degree r univariate polynomial. Note that r automatically divides dy.
�

4. GL2(K[x])-orbits of minimal polynomials. We saw that monic
minimal polynomials are particularly easy to describe and construct
since they coincide with coordinate polynomials. What can be said
for nonmonic minimal polynomials? Thanks to the relation (3), an
easy way to produce nonmonic minimal polynomials is to let act
G := GL2(K[x]) on a monic minimal polynomial. It is natural to
ask if all nonmonic minimal polynomials arise in such a way. We
prove here that the answer is no, a counterexample being given by
f = x(x− y2)2 − 2λy(x− y2) + λ2 (Theorem 1.5 of the introduction).
However, we will show that if we assume that dy is prime, then the
answer is yes (Theorem 1.6). Both results will follow from divisibility
constraints on the partial degrees of a minimal polynomial (Theorem
4.3 and Theorem 4.14).

Definition 4.1. Let f, g ∈ K[x, y] be two irreducible polynomials with
partial degrees degy f > 1 and degy g > 1. We say that f and g are G–
equivalent, denoted by f ≡ g, if there exists σ ∈ G such that f = σ(g),
the action of σ being defined in (2).

4.1. G-reduction of minimal polynomials. Proof of Theorem
1.5. In this subsection, we focus on the G–reduction of minimal poly-
nomials: what is the ’simplest’ form of a polynomial in the G–orbit of
a minimal one ?

4.1.1. Newton polytope. We define the generic Newton polytope of
f ∈ K[x, y] as the convex hull

P (f) := Conv
(

(0, 0) ∪ (0, dy) ∪ Supp(f)
)
,

where Supp(f) stands for the support of f , i.e the set of exponents that
appear in its monomial expansion. It is well known that the edges of
the generic polytope that do not pass throw the origin give information
about the singularities of f at infinity. In our context, we have the
following lemma:
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Lemma 4.2. Suppose that f is minimal. Then

P (f) := Conv
(

(0, 0), (0, dy), (b, dy), (0, a)
)

for some integers a, b.

Proof. Since f has a unique place along x = ∞, the claim follows
from Newton-Puiseux Factorization Theorem applied along the line
x =∞. See for instance [4, Chap. 6]. �

The integers a = a(f) and b = b(f) of Lemma 4.2 coincide with the
respective degrees in x of the constant and leading coefficients of f with
respect to y. Thanks to the previous lemma, we have the relation

dx = max(a, b)

for any minimal polynomial f and we define the integer c = c(f) as

c := min(a, b).

We say that f is in normal position if b ≤ a, that is if (dx, c) = (a, b).

dy dy

c = b dx = a c = a dx = b

Figure 1. The generic Newton polytopes of a minimal polynomial in
normal and non normal position.

4.1.2. Reduced minimal polynomials. We can now state our main
result about G–reduction of minimal polynomials. Given n : K[x, y]→
Q+ and f ∈ K[x, y], we define

nmin(f) := inf{n(g), g ≡ f}.

Theorem 4.3. Let f be a minimal polynomial with parameters (dy, dx, c).
Denote by V the euclidean area of P (f). Suppose that dy ≥ 2. Then
the following assertions are equivalent:
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(1) V = Vmin

(2) dx = dx,min and c = cmin

(3) dy does not divide dx − c.

Definition 4.4. We say that f is reduced if it is minimal and satisfies
one of the equivalent conditions of Theorem 4.3.

The remaining part of this subsection is dedicated to the proof of
Theorem 4.3.

4.1.3. The characteristic polynomial. It turns out that Newton-Puiseux
Theorem gives strong information about the edge polynomial of f at-
tached to the right hand side of P (f). Namely, we have:

Lemma 4.5. Suppose that f is minimal with parameters (dy, a, b).
Then

(7) f(x, y) = xb(αyp + βxq)n +
∑
j≤pn

pi+qj<pqn+np

cijx
iyj

where p ∈ N∗ and q ∈ Z are coprime integers such that

(8) pn = dy, qn = a− b,

where α, β ∈ K∗. We call the polynomial f∞ := (αyp + βxq)n the
characteristic polynomial of f at x =∞.

Proof. By Corollary 2.5, the Zariski closure in P1 × P1 of the curve
defined by f has a unique place along the line x =∞. Thus, it follows
once again from the Newton-Puiseux Theorem applied along the line
x = ∞ that the edge polynomial attached to the right hand edge of
P (f) is of the form xbg(x, y) where g is the power of an irreducible
quasi-homogeneous polynomial [4, Chap. 6]. �

Corollary 4.6. If V = Vmin, then dy does not divide dx − c.

Proof. By Lemma 4.7 below, the parameters (dx, dy, c, V ) are in-
variant under the inversion τ while the parameters (a, b) are permuted.
Hence, without loss of generality, we can suppose that f is in normal
position, that is (dx, c) = (a, b). By (8) in Lemma 4.5, we get that
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q ≥ 0 and that dy divides dx − c if and only if p = 1. In such a case,
the polynomial

g(x, y) := f(x, y − β/αxq)

satisfies b(g) = b(f) and a(g) < a(f). Since g is equivalent to f , it is
also minimal of partial degree dy, and we deduce from Lemma 4.2 that

V (g) =
dy(a(g) + b(g))

2
< V (f) =

dy(a(f) + b(f))

2
.

The corollary follows. �

4.1.4. Basic transformations. Let us first study the behaviour of the
parameters dx and c under the inversion and the polynomial De Jon-
quières transformations. We define the inversion τ ∈ G by

τ(f) := ydyf(x, 1/y).

We have the following obvious lemma:

Lemma 4.7. Let f ∈ K[x, y] not divisible by y. The parameters
dy, dx, c are invariant by τ and the parameters a and b are permuted.

Proof. It is straightforward to check that dy(g) < dy(f) if and only
if f(x, y) = ykh(x, y) with k > 0, which is excluded by hypothesis. The
remaining part of the lemma is straightforward. �

Let U ⊂ G stands for the polynomial De Jonquières subgroup of G,
that is the subgroup of transformations σ of type

σ(f) : (x, y) 7−→ f(x, λy + h(x)),

where λ ∈ K∗ and h ∈ K[x]. We define then deg(σ) := deg(h), with
the convention deg(0) = 0. If σ is an homothety, that is if h = 0, then
the Newton polytope and all the parameters of f and σ(f) obviously
coincide. Otherwise, we get:

Lemma 4.8. Let f be a minimal polynomial of degree dx > 0 and let
σ ∈ U not an homothety. Let g = σ(f). Then:

(1) If f is in normal position and dy does not divide dx − c then

dx(g) = max(c(f) + dy(f) deg σ, dx(f)) and c(g) = c(f)
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(2) If f is not in normal position then

dx(g) = dx(f) + dy(f) deg σ and c(g) = dx(f).

In both cases, g is in normal position.

Proof. Let us write σ(f) = f(x, λy + µxk + r(x)), with λ, µ ∈ K∗,
k = deg σ ≥ 0 and deg r < k and let us write f =

∑
cijx

iyj . We have

(9) g(x, 0) = f(x, µxk + r(x)) =
∑

i+kj=M

cijµ
jxi+kj +R(x)

where
M := max

(i,j)∈Supp(f)
(i+ kj) and degR < M,

Since the line i + kj = 0 has negative slope −1/k (vertical if k = 0),
Lemma 4.2 forces M to be reached at one of the two vertices (a(f), 0)
or (b(f), dy) of Nf , forcing the equality

M = max(a(f), b(f) + kdy).

Suppose that f is not in normal position. Then a(f) < b(f) and
M = b(f) + kdy is reached at the unique point (b(f), dy) of Nf . Thus,
there is a unique monomial in (9) with maximal degree. This forces
the equality

a(g) := degx(g(x, 0)) = b(f) + kdy,

On another hand it is clear that for any f , we have

lcy(g) = λdy lcy(f).

In particular, b(g) = b(f) = a(g) − kdy ≤ a(g) forcing equality
(a(g), b(g)) = (dx(g), c(g)). Since f is not in normal position, we have
(a(f), b(f)) = (c(f), dx(f)). Claim (2) follows. Suppose now that f is
in normal position and that dy does not divide dx − c. In particular,
we have a(f) 6= b(f) +kdy so that once again M is reached at a unique
point of Nf , forcing equality

a(g) := degx(g(x, 0)) = max(b(f) + kdy, a(f)).

Since b(g) = b(f) ≤ a(g) we have (a(g), b(g)) = (dx(g), c(g)). Since f
is in normal position, we have (a(f), b(f)) = (dx(f), c(f)). Claim (1)
follows. �
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4.1.5. Decomposition of GL2(K[x]). Let V := GL2(K) ⊂ G. It is
well known that GL2(K[x]) is the amalgamated free product of the
subgroups U and V along their intersections [14]: every elements of
GL2(K[x]) can be uniquely written as a finite alternating product of
elements of U and V , with no elements in U ∩ V except possibly the
first or last factor. On another hand, it is a classical fact that V is
generated by translations y → y + λ, homotheties y → λy, λ ∈ K∗
and the inversion τ . Since translations and homotheties lie in U ∩ V ,
it follows that any transformation σ ∈ G can be decomposed as an
alternate product

(10) σ = σnτσn−1τ · · ·σ2τσ1,

with σi ∈ U for all i. We can assume moreover that σi /∈ U ∩ V except
possibly for i = 1 or i = n, that is

deg σi > 0 ∀ i = 2, . . . , n− 1.

Let now σ ∈ G having decomposition (10) and let f ∈ K[x, y]. We
introduce the notation

f1 = σ1(f) and fi = (σiτ)(fi−1), i = 2, . . . , n.

and we write for short di = dx(fi) and ci = c(fi). The following
proposition has to be compared to [18] where the author considers the
behaviour of the total degree of a bivariate polynomial under the action
of Aut(A2).

Proposition 4.9. Let f be a minimal polynomial in normal position
such that dy does not divide dx − c and let σ ∈ G. With the notation
introduced before, we have

dx ≤ d1 < d2 < · · · < dn−1 ≤ dn and c = c1 < c2 < · · · < cn−1 ≤ cn.

Moreover dy does not divides dn − cn if and only if (dn, cn) = (dx, c).

Proof. By Lemma 4.8, the proposition is true if n = 1. We have
a(f) > b(f) by assumption so that a(f1) > b(f1) by Lemma 4.8. By
Lemma 4.7, it follows that τ(f1) is not in normal position. If σ2 is
an homothety, then n = 2 and f2 = σ(τ(f1)) has the same parameters
than f1, proving the proposition in that case. If σ2 is not an homothety,
then d2 > d1, c2 > c1 and dy divides d2 − c2 by Lemma 4.8. Hence the
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Proposition follows for n = 2. Moreover we have

n > 2 =⇒ deg σ2 > 0 =⇒ a(f2) > b(f2)

the second implication using again Lemma 4.8. Thus n > 2 implies
moreover that τ(f2) is not in normal position. The Proposition then
follows by induction. �

Proof of Theorem 4.3. We have (1) ⇒ (3) by Corollary 4.6 while
the implication (3) ⇒ (2) is an immediate consequence of Proposition
4.9. The remaining implication (2) ⇒ (1) follows from equality
V = dy(c+dx)/2 that holds for minimal polynomials thanks to Lemma
4.2. �

As announced at the beginning of the section, Theorem 1.5 is an
easy corollary of Theorem 4.3.

Proof of Theorem 1.5. A direct computation shows that the poly-
nomial f = x(x− y2)2 − 2λy(x− y2) + λ2 is minimal with parameters
(dy, dx, c) = (4, 3, 1) for all λ ∈ K∗ (for λ = 0, the polynomial f is re-
ducible). Since dy does not divide dx− c, f is reduced by Theorem 4.3.
Hence c = cmin = 1 6= 0 and f is not equivalent to a monic polynomial
by Theorem 4.3. �

4.2. Cremona equivalence of minimal polynomials. Theorem
1.5 shows that we can not hope that a nonmonic minimal polynomial
can be transformed to a coordinate via a composition of an element of
GL2(K[x]) with an element of Aut(A2). However, both groups act on
the curve of f as subgroups of the Cremona group Bir(A2) of birational
transformations of the plane, and both Theorem 3.3 and GL2(K[x])-
invariance of the degree of the discriminant leads us to ask the natural
following question:

Question 4.10. Do minimal polynomials define curves Cremona
equivalent to lines ?

Theorem 3.3 gives a positive answer in the case of monic polynomials,
and more generally for all members of their GL2(K[x])-orbits. This is
also the case for the nonmonic minimal polynomial of Theorem 1.5
as it will be shown in the next Proposition. Note that being Cremona
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equivalent to a line does not imply minimality. In a close context, it has
recently been proved in [13] that any rational cuspidal curve of P2 is
Cremona equivalent to a line, solving a famous problem of Coolidge and
Nagata. In the present context, minimal polynomials define rational
unicuspidal curves of P1 × P1 (Corollary 2.5) and we may ask whether
the result of Koras-Palka extends to this case. These kind of problems
are closely related to the geometry of the minimal embedded resolution.

Proposition 4.11. The curve defined be the polynomial f = x(x −
y2)2 − 2λy(x− y2) + λ2 is Cremona equivalent to a line.

Proof. Since the polynomial f is minimal with parameters (dx, dy, c) =
(3, 4, 1), it is easy to see that it defines a unicuspidal curve of P2.
Hence the claim follows from [13]. It has to be noticed that we can
’read’ the underlying birational transformation on the Newton poly-
tope of f . We have f1(x, y) := f(x + y2, y) = x3 + (xy − λ)2 and
f2(x, y) := f1(x, y/x + λ) = x3 + y2 defines a curve which is clearly
Cremona equivalent to f = 0. Let C ⊂ P2 be the projective plane
curve defined by the homogenization F (X,Y, Z) = X3 + Y 2Z of f2.
Consider the rational map

P2 99K P2

(X : Y : Z) 7→ (XY 2 : Y 3 : X3 + Y 2Z).

The restriction of σ to the chart Y = 1 coincides with the affine map
(x, z) → (x, x3 + z) which is clearly invertible. Hence σ ∈ Bir(P2) is a
Cremona transformation that satisfies σ−1(Y = 0) = C. �

4.3. Divisibility constraints for minimal reduced polynomials.
Proof of Theorem 1.6. Thanks to Theorem 1.2, monic minimal
polynomials coincide with coordinate polynomials. In particular, it
follows from [1] that they obey to the crucial property:

Proposition 4.12 (Abhyankar-Moh’s Theorem reformulated). Let f
be a monic minimal polynomial. Then dx divides dy or dy divides dx.

Proposition 4.12 is another reformulation of the embedding line
theorem of Abhyankar-Moh [1]. Indeed, this property allows to reduce
the degree of f with translations x 7→ x − αyk or y 7→ y − αxk. Since
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these translations preserve the property of being simultaneously monic
and minimal, we can reach f = y. In the nonmonic case, a similar
reduction process requires a positive answer to the following question:

Question 4.13. If f is minimal, is it true that dx− c divides dy or dy
divides dx − c ?

Here, the parameter c is the one defined in the previous Subsection
4.1. This property holds for all polynomials in the G-orbit of a monic
minimal polynomial by Proposition 4.12 and Proposition 4.9. It also
holds for the minimal reduced polynomial f of Theorem 1.5 (dx−c = 2
divides dy = 4), and might be seen as a key point in the explicit
construction of the birational map of Proposition 4.11. Although
Questions 4.10 and 4.13 are closely related, translations on x do not
preserve the minimality of a nonmonic minimal polynomial, and it is
not clear that a positive answer to Question 4.13 leads to a positive
answer to Question 4.10. Anyway, it would be an important property
for reducing minimal polynomials to a ”nice canonical form”. We prove
here a partial result that shows that if f is minimal and dy does not
divide dx − c then dy and dx − c are not coprime as soon as dx > 1 .

Theorem 4.14. Let f be a minimal polynomial of degree dy ≥ 1. If f
is nonreduced, then dy divides dx − c. If f is reduced, we have:

(1) If dx = 0 then c = 0 and dy = 1.
(2) If dx = 1 then c = 0 and dy > 1.
(3) If dx > 1 and c = 0 then dx divides dy.
(4) If dx > 1 and c > 0 then 2 ≤ gcd(dx − c, dy) ≤ dy/2.

Proof. If f is nonreduced, then dy divides dx − c by Theorem 4.3.
Assume that f is reduced. If dx = 0, then c = 0 is obvious and dy = 1
since otherwise f would not be irreducible. If dx = 1, then c ≤ 1. Since
f is reduced, we must have c = 0 and dy > 1 by Theorem 4.3 since
otherwise dy would divide dx − c. Suppose now that dx > 1. If c = 0,
then we can suppose that f is monic up to apply the inversion y → 1/y.
The claim thus follows from Proposition 4.12 combined with the fact
that dy can not divide dx since f is assumed to be reduced (Theorem
4.3). Suppose now that dx > 1 and c > 0. Then gcd(dx− c, dy) ≤ dy/2
by Theorem 4.3.
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There remains to show that dy and dx − c are not coprime. We will
use the theory of toric varieties. Since they appear only in this proof,
we do not give a detail account on toric varieties, but we rather refer
the reader to the books of Fulton [8] and Cox, Little, Schenck [6]. Let
P := P (f) be the generic Newton polytope of a bivariate polynomial
f such that f(x, 0) is non constant. Consider the map

φP : A2 −→ PN

t 7−→ [tm0 : · · · : tmN ],

where P ∩ Z2 = {m0, . . . ,mN}. Since (0, 0), (1, 0), (0, 1) ∈ P by
hypothesis, the map φP is an embedding. The projective toric surface
X = XP associated to P is by definition the Zariski closure of φP (A2).
Set theoretically, we have that

X = A2 t (D1 ∪ · · · ∪Dr)

where the divisors Di ' P1 are in one-to-one correspondence with the
edges Λ1, . . . ,Λr of P that do not pass through the origin. Moreover,
if we let C ⊂ X be the Zariski closure of the image of the affine curve
f = 0, then C intersects properly the divisors Di with total intersection
degree

deg(C ·Di) = Card(Λi ∩ Z2)− 1.

Let us return to our context of f minimal. We can assume that P (f)
is in normal position so that P (f) satisfies the previous conditions.
Moreover, since c > 0, P has exactly four edges by Lemma 4.2. Let
E ⊂ X be the divisor corresponding to the right hand edge Λ of P .
Since P has two horizontal edges and one vertical edge passing throw
the origin (see figure I), the normal fan of P refines the fan of A1 × P1

(see [8], Section 1.4) and it follows that

X \ E = A1 × P1.

In particular we have by minimality of f that C is smooth in X \ E.
One the other hand, we have that

deg(C · E) = Card(Λ ∩ Z2)− 1 = gcd(dx − c, dy).

Suppose that gcd(dx − c, dy) = 1. Then deg(C · E) = 1 forces C to
intersect E transversally at a unique point. In particular it is smooth
along E, hence smooth in X by what we said before. The arithmetic
genus formula for curves in toric surface [12], combined with the fact
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that C ⊂ X is smooth and rational leads to the equality

0 = g(C) = pa(C) = Card(Int(P ) ∩ Z2),

where Int(P ) stands for the interior of P . But this contredicts the fact
that P is the convex hull of (0, 0), (0, dy), (c, dy), (dx, 0) with dx > 1,
c > 0 and dy ≥ 2. �

5. A uniform lower bound for reducible polynomials. We
now focus on the non monic reducible case and we prove Theorem
1.7 of the introduction: all polynomials f ∈ K[x, y] with non constant
discriminant satisfy

degx ∆y(f) ≥
⌈dy − 1

2

⌉
and we have a complete classification of polynomials for which equality
holds. The proof requires some preliminary lemmas. In order to study
the discriminant of reducible polynomials, it is more convenient to
consider homogeneous polynomials in Y = (Y0 : Y1). The homogeneity
in x is not necessary. We thus consider polynomials F ∈ K[x][Y ].

Lemma 5.1. Let F ∈ K[x][Y ] be a squarefree polynomial of degree
degY F = d ≥ 0 with no factor in K[x]. Assume that F has only linear
factors. Then exactly one of the following occurs:

(1) degx ∆Y F = 0 and F is G–equivalent to some polynomial of
K[Y ].

(2) d = 2 and degx ∆Y F ≥ 2 > d
2 .

(3) d ≥ 3 and degx ∆Y F ≥ 2(d− 2) > d
2 .

Proof. The cases d = 0 and d = 1 are trivially in case (1). We now

assume that d ≥ 2. We have F =
∏d
i=1 Fi with Fi = aiY0 + biY1, for

some ai and bi in K[x]. For all nonempty subset I ⊂ {1, . . . , d}, we
write FI =

∏
i∈I Fi. If I has only 1 element, then clearly ∆Y FI ∈ K.

Among all subsets I such that ∆Y FI ∈ K, we consider one with a
maximal number of elements and write m for its cardinality. We have
1 ≤ m ≤ d.

Consider first the casem = 1. For all i 6= j, we have degx ResY (Fi, Fj) ≥
1. This implies that degx ∆Y F ≥ d(d− 1). This proves the case (2) if
d = 2 and the case (3) if d > 2.
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Consider now the case 2 ≤ m. We can assume that I = {1, 2, . . . ,m}.

We have then Res(F1, F2) ∈ K. The matrix σ =

(
b2 −b1
−a2 a1

)
is

therefore an element of GL2(K[x]). Via the action of σ, F1 and F2 are
transformed into Y0 and Y1. Without loss of generality, we assume that
F1 = Y0 and F2 = Y1. For all 3 ≤ i ≤ m, we have ResY (Fi, Y0) ∈ K,
hence bi ∈ K. Similarly, we have ResY (Fi, Y1) ∈ K, hence ai ∈ K. This
proves that Fi ∈ K[Y ] for all i ∈ I. If m = d, then we have proved that
F is equivalent to a polynomial in K[Y ], hence we are in case (1).

It remains to consider the case 2 ≤ m < d. This case is possible
only if d ≥ 3. As before, we can assume that I = {1, 2, . . . ,m} and
Fi ∈ K[Y ] for all i ∈ I. For an integer j 6∈ I, there exists at most one
value of i ∈ I such that ResY (Fi, Fj) ∈ K. Otherwise, using a similar
argument as before, we would have Fj ∈ K[Y ] and ResY (Fi, Fj) ∈ K for
all i ∈ I, contradicting the maximality of I. Since each Fj for j 6∈ I has
at least m−1 nonconstant resultants with Fi for i ∈ I, this proves that
degx ∆Y F ≥ 2(m−1)(d−m). It is an exercise to verify the inequalities
2(m− 1)(d−m) ≥ 2(d− 2) > d

2 . �

Lemma 5.2. Let F ∈ K[x][Y ] be an irreducible polynomial of degree
d ≥ 2. Assume that F is minimal. Consider an integer n and
polynomials Fi = aiY0 + biY1, for 1 ≤ i ≤ n and ai, bi ∈ K, that
are pairwise coprime. If ResY (Fi, F ) ∈ K for all 1 ≤ i ≤ n, then
n ≤ 1.

Proof. It is enough to prove that the case n = 2 is impossible.
Suppose that two such polynomials exist. Using the action of GL2(K),
we can assume that F1 = Y0 and F2 = Y1. We write r1 = ResY (Y1, F ) ∈
K. and r0 = ResY (Y0, F ) ∈ K. Because F is irreducible of degree
d ≥ 2, it can not be divisible by Y0, hence r0 6= 0. Without loss of
generality, we can assume that r0 = 1. The relation ResY (Y0, F ) = 1
therefore implies that F (Y0, Y1) is monic in Y1. By Theorem 3.3,
F (1, y) is equivalent to y up to an automorphism of A2. This implies
that F (1, y) is irreducible of degree d ≥ 2, as well as F (1, y) − r1.
However, this last polynomial is by construction divisible by y. We get
a contradiction. �

Lemma 5.3. Let F ∈ K[x][Y ] be a squarefree polynomial of degree
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degY F = d ≥ 2 with no factor in K[x]. Assume that F = PQ, where
P is irreducible of degree degY P ≥ 2, and Q has only linear factors.
Then

degx ∆Y F ≥
⌈d− 1

2

⌉
Furthermore, equality holds if and only if F is G–equivalent to one of
the following exceptional polynomials:

• (case d = 2): Y 2
0 + (x+ a)Y 2

1 , (a ∈ K)
• (case d = 3): Y1(Y 2

0 + (x+ a)Y 2
1 ), (a ∈ K)

• (case d = 4): Y1(Y 3
0 + aY0Y

2
1 + (x+ b)Y 3

1 ), (a, b ∈ K)
• (case d = 4): Y0Y1(Y 2

0 + (ax + b)Y0Y1 + Y 2
1 ), (a ∈ K∗ and

b ∈ K).

Proof. We write F = PQ. In order to shorten some expressions,
we write dP = degY P and dP = degY Q. We have d = dP + dQ. By
Theorem 1.3 we already have degx ∆Y P ≥ dP −1. The proof splits into
different cases according to which case corresponds to the polynomial
F in Lemma 5.1.

Case (0): if dQ = 0. We have degx ∆Y F = degx ∆Y P ≥ d − 1 ≥⌈
d−1
2

⌉
. Equality holds if and only if d = 2 and P is minimal.

By Theorem 1.6, P is G–equivalent to a polynomial of the form
Y 2
0 + (x+ c)Y 2

1 , with c ∈ K.

Case (1): if dQ > 0 and degx ∆YQ = 0. By Lemma 5.1, we can
assume that Q ∈ K[Y ].

Sub-case (1.1): if dQ ≤ dH − 2. Here, we simply have degx ∆Y F ≥
dP − 1 ≥ dP+dQ

2 . In this case, the announced inequality is proved. We
then observe that equality implies that P is minimal, dQ = dP − 2,
and ResY (P,Q) ∈ K. By Lemma 5.2, this is possible only if dQ = 1
and dP = 3. By Theorem 1.6, we deduce that P is G–equivalent to a
polynomial of the form Y 3

0 + aY0Y
2
1 + (x + b)Y 3

1 . In this case, Q can
only be Y1.

Sub-case (1.2): if dQ = dQ − 1, we have degx ∆Y F ≥ dP − 1 = d−1
2 .

This proves the inequality. The equality holds if and only if P is
minimal and ResY (P,Q) ∈ K. By Lemma 5.2, this is possible only
if dQ = 1 and dP = 2. By Theorem 1.6, we deduce that P is G–
equivalent to a polynomial of the form Y 2

0 + (x+ a)Y 2
1 . In this case, Q

can only be Y1.
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Sub-case (1.3): if dQ = dP . In this case, we have d = 2dP . If
P is minimal, then by Lemma 5.2, degx ResY (P,Q) ≥ dP − 1, hence
degx ∆Y F ≥ dP − 1 + 2(dP − 1). This is always larger than d

2 . If
P is not minimal, we have degx ∆Y P ≥ dP , whence the inequalities
degx ∆Y F ≥ dP = d

2 . This proves the inequality. We see here that
equality holds only if degx ∆Y P = dP and ResY (P,Q) ∈ K. Let

Q =
∏dP
i=1Qi be the factorization of Q into linear factors in K[Y ],

and let Q0 be another linear polynomial in K[Y ], coprime to Q. We
define R0 = ResY (P,Q0) ∈ K[x]. Using interpolation at the Qi’s, we
see that P can be written as P = λQR0 +b, with λ ∈ K∗ and b ∈ K[Y ].
We clearly have degxR0 = degx P = degx F . We denote by r0 ∈ K∗
the leading coefficient of R0. ∆Y P is an homogeneous polynomial of
degree 2(dP − 1) in terms of the coefficients of P , hence of degree at
most D = 2(dP − 1) degx P in x. The coefficient in xD in its expansion
is equal to DiscY (λQr0), which is not zero since Q is squarefree. This
proves that degx ∆Y P = 2(dP − 1) degx P . Since this is also equal to
dP , the only possibility is degx P = 1 and dP = 2. Using the action
of GL2(K), we can therefore assume that Q = Y0Y1. Under all these
conditions, P is of the form P = Y 2

0 + (ax + b)Y0Y1 + Y 2
1 , for some

a ∈ K∗ and b ∈ K.

Sub-case (1.4): if dQ ≥ dP + 1. It is impossible for P to have
constant resultants with strictly more than dP linear polynomials in
K[Y ], since otherwise, by interpolation, it would have coefficients in
K, contradicting its irreducibility. This proves that degx ResY (P,Q) ≥
dQ − dP . We then have the inequalities degx ∆Y F ≥ dP − 1 + 2(dQ −
dP ) ≥ dQ ≥ d+1

2 . This proves the announced inequality and in this
case an equality is impossible.

Cases (2) and (3): in the remaining cases, we have dQ ≥ 2 and

degx ∆YQ >
dQ
2 . This gives degx ∆Y F > dP − 1 +

dQ
2 ≥

dP
2 +

dQ
2 = d

2 ,
whence the conclusion. �

Lemma 5.4. Let q = y2 + ay + b be a polynomial in K[x][y], with a
and b in K[x]. Assume that degx a

2 − 4b is odd.

For a polynomial p ∈ K[x][y], we have Resy(p, q) ∈ K if and only if
p = αq + β for some α ∈ K[x][y] and β ∈ K.

Proof. Let p = αq + uy + v be the euclidean division of p by



PLANE CURVES WITH MINIMAL DISCRIMINANT 31

q, with u and v in K[x]. We have Resy(p, q) = Resy(uy + v, q) =

(v − au/2)2 − a2−4b
4 u2. By assumption, this is an element of K. Since

degx a
2 − 4b is odd, inspecting degrees shows that this is possible only

if u = 0 and v − au/2 ∈ K. This gives the conclusion. �

We are now ready to prove Theorem 1.7 that we reformulate in a
more convenient form for the proof:

Theorem 5.5. Let F ∈ K[x][Y ] be a squarefree polynomial of degree
degY F = d ≥ 0 with no factor in K[x]. Then exactly one of the
following occurs:

(1) degx ∆Y F = 0 and F is G–equivalent to some polynomial of
K[Y ].

(2) d ≥ 2 and degx ∆Y F ≥
⌈
d−1
2

⌉
.

Furthermore, if d ≥ 2, equality degx ∆Y F =
⌈
d−1
2

⌉
occurs if and

only if F is G–equivalent to one of the following polynomials:

• (case d odd): Y1
∏n
i=1(Y 2

0 + (x+ ai)Y
2
1 ) (ai ∈ K).

• (case d even):
∏n
i=1(Y 2

0 + (x+ ai)Y
2
1 ) (ai ∈ K).

• (case d = 4): Y1(Y 3
0 + aY0Y

2
1 + (x+ b)Y 3

1 ) (a, b ∈ K)
• (case d = 4): Y0Y1(Y 2

0 +(ax+b)Y0Y1+Y 2
1 ) (a ∈ K∗ and b ∈ K).

Proof. Write F = PQ where Q has only linear factors and P has
no linear factor. Let P =

∏n
i=1 Pi be the decomposition of P into

irreducible factors in K[x][Y ]. If n = 0 then the result is given by
Lemma 5.1. Assume now that n ≥ 1. The polynomial F1 = P1Q
satisfies Lemma 5.3, hence degx ∆Y F1 ≥ degQ+degP1−1

2 . For i ≥ 2, the
polynomials Pi satisfy Theorem 1.3, hence degx ∆Y Pi ≥ degPi − 1 ≥
degPi

2 . Putting these inequalities together gives

(11) degx ∆Y F ≥
degQ+ degP1 − 1

2
+
∑
i≥2

degPi
2

=
d− 1

2

Consider now the question of equality. The easiest case is when
d is odd. In this situation, all inequalities in (11) are equalities.
This implies that degPi = 2 for all i ≥ 2 and degF1 is odd with
degx ∆Y F1 = degF1−1

2 . By Lemma 5.3, we can therefore assume that

F1 = Y1(Y 2
0 + (x + a1)Y 2

1 ). The Pi’s have constant resultant with Y1
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and Y 2
0 + (x + a1)Y 2

1 . Using Lemma 5.4, we deduce that they are of
the form Pi = bi(Y

2
0 + (x+ ai)Y

2
1 ) with ai, bi ∈ K. The constant

∏
bi

can be removed using G–equivalence. This gives the conclusion for d
odd.

If d is even, Lemma 5.3 shows that F can not have more that 2 linear
factors. We have therefore three cases to consider:

• If F has no linear factor, then by 5.3 we can assume that P1 =
Y 2
0 + (x+a1)Y 2

1 for some a1 ∈ K. The proof in this case is very similar
to the previous case and left to the reader.

• If F has one linear factor, then by Lemma 5.3, it is enough to
consider the case F1 = Y1P1 with P1 = Y 3

0 + aY0Y
2
1 + (x + b)Y 3

1 for
some a, b ∈ K. The other factors Pi must be quadratic and minimal,
and also have constant resultant with F1. The resultant with Y1 shows
that the Pi’s are monic in Y0. If n ≥ 2, the resultant of P2 and
P1 = Y 3

0 +aY0Y
2
1 +(x+ b)Y 3

1 is constant, and Lemma 5.4 imposes that
P1 = Y0P2 + βY 3

1 with β ∈ K. This is incompatible with β = x + b,
hence we must deduce that n = 1 and F = F1.

• If F has two linear factors, then by Lemma 5.3, it is enough to
consider the case F1 = Y0Y1P1 with P1 = Y 2

0 + (ax + b)Y0Y1 + Y 2
1 for

some a ∈ K∗ and b ∈ K. The other factors Pi must be quadratic and
minimal, and also have constant resultant with F1. In particular, if
n ≥ 2, ResY (Y0Y1, P2) ∈ K imposes that P2 = a2Y

2
0 + b2Y0Y1 + c2Y

2
1

with a2 and c2 in K. But this is incompatible with degx ∆Y P2 = 1,
hence we must deduce that n = 1 and F = F1. �

Appendices

A. Small ∆y versus small ∆x. The equivalence (a) ⇔ (b) of
Theorem 3.3 asserts that a monic polynomial is minimal with respect to
y if and only it is monic and minimal with respect to x. We prove here
a generalization of this statement to the case of nonmonic polynomials.

For f ∈ K[x, y] a nonconstant bivariate polynomial we let lcy(f)
(resp. lcx(f)) stand for the leading coefficient of f seen as a polynomial
in y (resp. in x). We denote by nx (resp. ny) the number of distinct
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roots of lcy (resp. of lcx). We have the inequalities

nx ≤ degx lcy(f) and ny ≤ degy lcx(f)

and we say that f is nondegenerate if both equalities hold, that is if both
leading coefficients of f are squarefree. We write for short f(∞,∞) = 0
if the bihomogenization F of f vanishes at the point X1 = Y1 = 0, that
is if f has no monomial of bidegree (dx, dy).

Proposition A.1. Let f ∈ K[x, y] be a nondegenerate irreducible
bivariate polynomial such that f(∞,∞) = 0. The following assertions
are equivalent:

(a) degx ∆y(f) = dy + ny − 1.
(b) degy ∆x(f) = dx + nx − 1.

(c) The Zariski closure C ⊂ P1 × P1 of the affine curve f = 0 is
rational, unicuspidal and smooth outside (∞,∞).

Moreover, the equivalence (c) ⇔ (a) ∩ (b) still holds for degenerate
polynomials.

Proof. Let us first prove (c) ⇔ (a) ∩ (b). Hence f is allowed to be
degenerate.

• (c)⇒ (a) ∩ (b). By Proposition 2.3, we have the equality

degx ∆y(f) = 2dx(dy − 1)− 2δ∞ − r∞

where δ∞ and r∞ stand respectively for the delta invariant and the
ramification index of f over x =∞. Since C is assumed to be rational
with a unique possible singularity at (∞,∞), the adjunction formula
leads to the equality

δ∞ = pa(C) = (dx − 1)(dy − 1).

Moreover, the curve is assumed to be everywhere locally irreducible.
Hence the number of places of C over x =∞ coincides with the number
of intersection points of C with x =∞, that is nx + 1. It follows that

r∞ = dy − (nx + 1).

Equality (a) then follows from Proposition 2.3. The implication (c)⇒
(b) follows from (c)⇒ (a) by symmetry.
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• (a)∩ (b)⇒ (c). Let us assume that (a) holds. By Proposition 2.3,
we have:

(12) 2δ∞ = 2dx(dy − 1)− (dy + nx − 1)− r∞.

By assumption, the curve C of f has at least ny + 1 places over x =∞
so that

r∞ ≤ dy − ny − 1.

Combined with (12), we get the inequality

2δ∞ ≥ 2(dx − 1)(dy − 1).

On the other hand, the genus being nonnegative, the adjunction for-
mula leads to the inequality

δ∞ = pa(C)− g ≤ pa(C) = (dx − 1)(dy − 1).

This forces δ∞ = pa(C). Hence g = 0 and the singularities of C are
located along the line x = ∞. This forces also r∞ = dy − ny − 1 so
that the curve C has exactly ny + 1 places over x =∞, hence is locally
irreducible along the line x = ∞. If moreover (b) holds, we get by
symmetry that C has all its singularities located on the line y = ∞,
and that C has exactly nx + 1 places over y = ∞. Hence (a) ∩ (b)
forces C to be rational, with a unique possible singularity at (∞,∞),
this singularity being irreducible.

To finish the proof, we need to show that implication (a) ⇒ (c)
holds when f is nondegenerate. We just proved that (a) implies that C
is rational with all its singularities irreducible and located on the line
x = ∞. The nondegenerate assumption ensures that C is transversal
to the line x = ∞ (hence smooth) except possibly at (∞,∞). Hence
(c) holds. �

Corollary A.2. Let f ∈ K[x, y] be an irreducible bivariate polynomial
such that f(∞,∞) = 0. Then

degx ∆y(f) = dy − 1 =⇒

{
degy ∆x(f) = dx + nx − 1

ny = 0

and the converse holds for nondegenerate polynomials. In particular,
polynomials vanishing at (∞,∞) and minimal with respect to y are
monic with respect to x.
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Proof. If f is minimal, its curve C ⊂ P1 × P1 is rational unicuspidal
with a unique place on x = ∞ by Theorem 1.3. This place has
to be (∞,∞) by assumption. This forces ny = 0. The equality
degy ∆x(f) = dx + nx − 1 follows from Proposition A.1. If f is
nondegenerate, the converse holds again by Proposition A.1. �

B. Parametrization of minimal polynomials. Let f =
∑
αijx

iyj ∈
K[x, y] be a polynomial with parameters (dx, dy, c) and with indeter-
minate coefficients

α = (αij)(i,j)∈P (f)∩Z2 .

The discriminant of f is a polynomial in (x, α) of degree 2dx(dy− 1) in
x. Thus, in order to find which specializations of α lead to a minimal
polynomial, one needs to compute ∆y(f) and then to solve a system of

2dx(dy − 1)− (dy − 1) ∈ O(dxdy)

polynomial equations in α with

Card(P (f) ∩ Z2) ∈ O(dxdy)

unknowns. This polynomial system turns out to be very quickly too
complicated to be solved on a computer, even for reasonable size
of dx and dy. Moreover, there remains to perform an irreducibility
test for each solution. However, we know that minimal polynomials
define a rational curve, a strong information that is not used in the
previous basic strategy. In particular, the curve admits a rational
parametrization, that is to say there exist two rational functions u, v ∈
K(s) such that the equality

f(u(s), v(s)) = 0

holds in K(s). The following result summarizes the relations between
minimality and parametrization.

Proposition B.1. An irreducible polynomial f ∈ K[x, y] is minimal if
and only if there exist two rational functions u, v ∈ K(s) such that:

(1) f(u, v) = 0 in K(s) (rationality)
(2) K(s) = K(u, v) (proper parametrization)
(3) u ∈ K[s] (unique place along x =∞)
(4) K[s] = K[u, v] ∩K[u, v−1] (smoothness in A1 × P1).
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Moreover, given such a pair u, v, we have the equality

dy = degs u, a(f) = degs v1 and b(f) = degs v2

where v1, v2 ∈ K[t] are coprime polynomials such that v = v1/v2.

Proof. We know by Theorem 1.3 that f is minimal if and only if
the curve C ⊂ P1 × P1 is rational, with a unique place along x = ∞
and smooth outside this line. Rationality is equivalent to the existence
of a proper parametrization, that is the existence of rational functions
u, v ∈ K(s) such that items (1) and (2) hold. The rational map

(u, v) : K 99K K2

extends to a morphism

ρ : P1 → P1 × P1

whose image is C. Moreover, the parametrization being proper, this
morphism establishes a one-to-one correspondence between P1 and the
places of C. The fact that C has a unique place along the line x =∞
is equivalent to the fact that u has a unique pole on P1. Up to a
Moebius transformation on P1, there is no less to assume that this pole
is s = ∞, meaning precisely that u ∈ K[s]. The restriction of C to
A1 × P1 is smooth if and only if its restrictions to the two affine charts
U := A1 × {y 6= ∞} ' A2 and V := A1 × {y 6= 0} ' A2. But this is
also equivalent to the fact that the coordinate rings

K[x, y]

(f(x, y))
' K[u, v] and

K[x, y]

(ydyf(x, 1/y))
' K[u, v−1]

of the affine curves C|U and C|V are integrally closed in their field
of fractions K(u, v) = K(s). Since u ∈ K[s], we deduce that s is
integrally closed over K[u, v] and over K[u, v−1], wence the inclusion
K[s] ⊂ K[u, v] ∩ K[u, v−1]. The reverse inclusion always holds by a
Gauss Lemma argument, and we get item (4). Conversely, if item (4)
holds, then K[u, v] ∩ K[u, v−1] = K[s] is integrally closed so that the
curve is smooth in A1 × P1. The formulas for degy f , a(f) and b(f)
follow for instance from [7], where the authors compute the Newton
polytope of a parametrized curve. �

Thanks to Proposition B.1, computing all minimal polynomials of
given parameters (dx, dy, c) is equivalent to computing the discriminant



PLANE CURVES WITH MINIMAL DISCRIMINANT 37

of the implicit equation of the parametrization (u, v) with indetermi-
nate coefficients that satisfies items (1), (2), (3) and solving a system
of

(2dx − 1)(dy − 1) ∈ O(dxdy)

polynomial equations with

dy + dx + c ∈ O(dx + dy)

unknowns. When compared to the previous approach, we reduce
drastically the number of unknwons and we avoid the irreducibility
tests. This is the approach which allowed us to find the crucial example
of Theorem 1.5 by computer. It has to be noticed however that
the degree of the polynomial system then increases. Finally, let us
mention that item (4) (hence minimality) can also be checked directly
by requiring that the so-called D-resultant of the pair (u, v) is constant
[9], a computational problem of an a priori equivalent complexity.
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