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Abstract

We relate factorization of bivariate polynomials to singularities of projective plane curves. We
prove that adjoint polynomials of a polynomial F ∈ k[x, y] with coefficients in a field k permit to
recombinations of the factors of F (0, y) induced by both the absolute and rational factorizations
of F , and so without using Hensel lifting. We show in such a way that a fast computation of
adjoint polynomials leads to a fast factorization. Our results establish the relations between
the algorithms of Duval-Ragot based on locally constant functions and the algorithms of Lecerf
and Chèze-Lecerf based on lifting and recombinations. The proof is based on cohomological
sequences and residue theory.
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1. Introduction

Factorization of multivariate polynomials is a central topic in Computer Algebra. We
refer the reader to (Chèze, 2004; Chèze-Lecerf, 2007; Gathen-Gerhard, 2003) and to the
references therein for recent surveys of the topic. In this article, we study the relations
between singularities of projective plane curves and factorization of bivariate polynomi-
als by using adjoint polynomials. In (Duval, 1991), an algorithm is given for absolute
bivariate factorization based on locally constant rational functions on the curve, using
normalization and rational Newton-Puiseux expansions. The best actual complexities for
rational and absolute factorization have been obtained later on in (Lecerf, 2007) and
(Chèze-Lecerf, 2007) by using the so-called method of lifting and recombination of mod-
ular factors. We establish here the bridge between these two approaches and we show
that the factorization can be computed fast if we are given the adjoint polynomials.

Main result. Let F ∈ k[x, y] be a bivariate polynomial defined over an arbitrary field k.
We are interested in computing both the rational (over k) and absolute (over an algebraic
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closure k̄) factorizations of F . In all of the sequel (except Section 8), we assume that F
satisfies the following hypothesis

(H) F (0, y) is separable of degree d = deg(F ).

In particular F is square-free. Let C ⊂ P2 be the (reduced) projective curve over k defined
by F . We say that D ⊂ P2 is an adjoint curve of C if it passes throw all singular points p
of C (including infinitely near points) with multiplicity at least that of C minus one (see
Section 4 for a more precise definition). We say that H ∈ k[x, y] is an adjoint polynomial
of F of degree n if it gives the dehomogenized equation of an adjoint curve of degree
n. Adjoints may be computed by linear algebra from the resolution of singularities. We
denote by

A ⊂ k[y]

the vector subspace spanned by the remainders modulo (x) of adjoint polynomials of F
of degree d− 2.

Our main result asserts that we can compute quickly both the rational and absolute
factorizations of F from the knowledge of a basis of A. Let us be more precise. Suppose
for a while that k = k̄ to simplify. Our key result says that

dim(A) = d− s,

where s is the number of irreducible factors of F . Moreover, let F1, . . . , Fs be the irre-
ducible factors of F . The classical recombination problem consists to find the factors of
Fj(0, y) for all j among the factors of F (0, y). We show that given a basis for A, the
recombination problem is reduced to solve a linear system over k of d− s equations and
d unknowns. In some sense, A contains the minimal information for solving recombina-
tions. Once the recombination problem is solved, it remains to use a fast multifactor
Hensel lifting to compute the Fj ’s (the situation is nevertheless more subtle when k is
not assumed to be algebraically closed).

For our complexity analysis, we charge a constant cost for each arithmetic operation
(+,−,×,÷) in the ground field and the equality test. We use the classical O notations
for complexity, and we use Õ in order to hide logarithmic factors in cost estimates. We
recall that two univariate polynomials over k of degree ≤ m can be multiplied with softly
linear complexity Õ(m) (Gathen-Gerhard, 2003, Thm 8.23). We denote by 2 ≤ ω < 3 the
matrix multiplication complexity exponent. We obtain the following complexity results:

Theorem 1. Let k be a field with effective univariate factorization. There exists a de-
terministic algorithm that, given F satisfying (H) and given a basis of A, computes the
rational factorization of F with one factorization in k[y] of degree d plus

O(d2(d− s)ω−2) ⊂ O(dω)

arithmetic operations over k, with s the number of irreducible rational factors of F .

Up to our knowledge, the actual best complexity for deterministic rational factor-
ization of dense bivariate polynomials is O(dω+1) operations in k (Lecerf, 2007). Thus
theorem 1 leads us to ask if we can compute efficiently a basis for A (see below for such
a discussion).
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The vector space A contains too enough information to compute the absolute factoriza-
tion of F . By absolute factorization, we mean here the computation of a family of pairs
of polynomials

{(Q1, q1), . . . , (Qr, qr)}

where qi ∈ k[t] is monic, Qi ∈ k[x, y, t] and where

F (x, y) =

r∏
i=1

∏
qi(α)=0

Qi(x, y, α)

is the irreducible decomposition of F over k̄. Note that such a representation is non
unique. We obtain the following result:

Theorem 2. Suppose that k has characteristic 0 or greater than d(d− 1). There exists
a deterministic algorithm that, given F satisfying hypothesis (H) and given a basis of A,
computes the absolute factorization of F within

Õ(d2(d− s̄)ω−2 + s̄d3) ⊂ Õ(d4)

arithmetic operations over k, with s̄ the number of irreducible absolute factors.

We obtain in theorem 2 the same class of complexity Õ(d4) known for absolute deter-
ministic factorization. Note that in contrast to the rational case, no univariate factoriza-
tion is required here.

Following (Chèze-Lecerf, 2007), we obtain too a probabilistic algorithm. We use here
the same probabilistic computational model in terms of computation trees as used in
(Chèze-Lecerf, 2007). In particular, almost all the trees of a family are expected to be
executable on a given input if the cardinality of k is infinite.

Theorem 3. Suppose that k has characteristic 0 or greater than d(d − 1). Given F
satisfying hypothesis (H) and given a basis of A, there exists a polynomial S ∈ k̄[t1, . . . , td]
of degree at most d(d− 1) and a family of computation trees parametrized by c ∈ kd such
that

• Any executable tree returns the absolute factorization of F ;
• A tree is executable whenever S(c) 6= 0.

The maximal cost of the trees is bounded by

Õ(d2(d− s̄)ω−2 + d
ω+3
2 ) ⊂ Õ(d

ω+3
2 )

arithmetic operations over k. If the cardinality of k is infinite, the algorithm returns the
correct answer with probability one.

The complexity of theorem 3 has to be compared to the best known complexity Õ(d3)
for absolute probabilistic factorization (Chèze-Lecerf, 2007).
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Is such a method efficient? Up to our knowledge, the complexities obtained in the 3
previous theorems are all smaller or equal to the actual best complexities for factorization
of dense bivariate polynomials. Of course, the input data A represents a very strong
information, and our results lead immediately to the following question:

Is there an efficient way to compute a basis of A?

We obtain the following result, as a consequence of the Riemann-Roch theorem for re-
ducible curves.

Theorem 4. Given a basis of the vector space Adj(d − 2) of all adjoint polynomials of
F of degree d− 2, we compute a basis of A within

O(d2(g + d− s̄)) ⊂ O(d4)

arithmetic operations over k, where g is the geometric genus of C (sum of the genus of
the irreducible components).

The complexity of Theorem 4 is sharp: the k-vector space Adj(d− 2) of adjoint poly-
nomials of degree d− 2 has dimension g + d− s̄ and the size of a basis of Adj(d− 2) is
O(d2(g+d− s̄)) field elements. So, computing a basis of A via first computing a basis for
Adj(d − 2) and then reducing modulo x is not efficient, except maybe for deterministic

absolute factorization (complexity Õ(d4)) or for curves of small genus (g ∈ Õ(dω−1) in
order to stay in the class of complexity of deterministic rational factorization).

Suppose now that we are given an oracle that predicts a small genus (the extremal case
being all irreducible components rational and g = 0) and that we want to use Theorem
4 to compute a basis for A. Thus we need to compute a basis of Adj(d − 2). There
are efficient algorithms for computing adjoints, by using Newton-Puiseux expansions
(Stadelmeyer-Winkler, 1997) or integral basis (Mnũk, 1997; Deconinck-Van Hoeij, 2001),
but whose complexities have not been analyzed yet. Unfortunately, even for small genus,
it is still a priori hopeless that Theorem 4 gives an efficient method for computing A: one
needs to know the normalization of the curve C for computing adjoints and we expect
factorization to be a subprocedure of normalization. Up to our knowledge, if k = Fp with

p > d, the best complexity for computing all singular Puiseux expansions of F is Õ(d5)
operations (Poteaux-Rybowicz, 2011).

However, we will show (Section 9) that it’s enough to separate all local branches C
in order to compute A. In particular, we need not to desingularize irreducible branches.
Moreover, we will see (Section 8) that in some cases, our method adapts too to the case
F (0, y) non separable, an important issue over fields of small caracteristic for which it
might not exist a separable univariate specialization. In such a case, we can use some
extra combinatorial information given by the resolution of singularities along the singular
fiber to speed-up the algorithm. In that spirit, the author recently developed a factor-
ization algorithm over Q[x, y] based on the toric resolution of the singularities at infinity
(Weimann, 2010), running in polynomial time in the volume of the Newton polytope, im-
proving (Lecerf, 2007) for sparse enough polynomials. A comparable result has recently
been obtained in a different way in (Berthomieu-Lecerf, 2012), where the authors use a
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clever deformation of the Newton polytope to bring back F to an almost dense polyno-
mial. The algorithm in (Weimann, 2010) has an extra advantage to perform univariate
factorizations of smaller degrees with a faster recombination, but it works only over
number fields and assumes an extra hypothesis of separability of the facet polynomials.

To summarize, unless someone can find a different way of computing A, we are unfortu-
nately not going to get a better factorization algorithm using our approach. Nevertheless,
it’s still not clear if the method developed here may be useful for some special type of
polynomials (small degree components, smooth components, high singularities along a
line, etc.), or if we are given some extra input data concerning the singularities (genus,
discriminant, etc.). Anyway, despite of their hypothetical practical impacts, our results
clarify the relations between normalization and factorization, giving a good point of view
for comparing the classes of complexity of both operations and of various related algo-
rithms (Newton-Puiseux, Hensel lifting, integral closure, etc.). It has to be noticed too
that the hypothetic strength of our approach depends strongly on further improvements
in the algorithmic theory of singularities, especially on the Newton-Puiseux algorithm.

Idea of the proof. Let us suppose that k = k̄ to simplify. Let V be the vector space of
meromorphic 1-forms of C that have only poles above x = 0. Each of these 1-forms gives an
element of kd given by its residues at the d places above x = 0. By the residue theorem, the
sum of residues of a meromorphic form on a curve is zero. Thus, each form in V provides
a linear relation between these residues, one relation for each irreducible component Cj
of C. Thus, with s irreducible components (factors), we get s independent linear relations
for these d residues; this implies that the image of V in kd by taking residues gives a
subspace W ⊂ kd of dimension at most d − s. We will show that this subspace has
exactly dimension d− s. The proof mainly uses the structural sheaf sequence of a divisor
on the normalization of C, combined with the Serre duality. Finally the theory of adjoints
polynomials permits to show that V and W are respectively isomorphic to Adj(d−2) and
A. It follows that dim(A) = d − s so that absolute recombinations and adjoints modulo
(x) determine each other by solving a d×d linear system over k (Corollary 18). Once the
recombinations are solved, it remains to use a fast multifactor Hensel lifting to compute
the factors. Roughly speaking, our method combines ideas developed in (Duval, 1991)
and (Ragot, 1997) (computing locally constant rational functions) with ideas in (Lecerf,
2007) and (Chèze-Lecerf, 2007) (recombination of modular factors by Hensel lifting).

Organization. We introduce the recombination problem and its relation to locally con-
stant functions in Section 2. In Section 3, we prove our key result that gives conditions
for lifting locally constant functions using residue theory and cohomology. In Section 4,
we establish the relation with adjoint polynomials and we prove Theorem 4. We solve
recombinations in Section 5 from which follow the proofs of Theorem 1, 2 and 3 in Section
6. We illustrate our method and results on two simple examples in Section 7. In Section
8, we discuss the case F (0, y) non separable with an illustrating example. In Section 9,
we show that the computation of A does not require the all resolution of singularities
and we conclude in the last Section 10.

Acknowledgements. We thank the referees and the editor for their helpful comments
and suggestions. We thank especially the referee who pointed out a mistake in the com-
putation of adjoints in the example of Section 8 and who gave us a Maple code for
computing a basis of Adj(d− 2).
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2. Recombinations and locally constant functions.

Our algorithms are related to (Lecerf, 2007) and (Chèze-Lecerf, 2007), both methods
being based on the recombination problem of the modulo (x) factors. We first explain
this problem and then we relate it to the sheaves of locally constant functions on the
normalizing curve. We keep the same notations and hypothesis as in the introduction.

2.1. Recombinations problems

Let us consider the respective factorizations{
F (x, y) = F1(x, y) · · ·Fs(x, y)

F (0, y) = f1(y) · · · fn(y)

of F and F modulo (x) over k (recall that F (0, y) is assumed to be separable). Solving
rational recombinations consists in computing the vectors

ν(j) = (ν
(j)
1 , . . . , ν(j)

n ) ∈ {0, 1}n

induced by the relations

Fj(0, y) =

n∏
i=1

fi(y)ν
(j)
i , j = 1, . . . , s.

In the same way, let {
F (x, y) = F̄1(x, y) · · · F̄s̄(x, y)

F (0, y) = f̄1(y) · · · f̄d(y)

be the respective factorizations of F and F modulo (x) over k̄. Solving absolute recom-
binations consists in computing the vectors

ν̄(j) = (ν̄
(j)
1 , . . . , ν̄

(j)
d ) ∈ {0, 1}d

induced by the relations

F̄j(0, y) =

d∏
i=1

f̄i(y)ν̄
(j)
i , j = 1, . . . , s̄.

The following picture illustrates the absolute recombinations when C is union of a cubic
and a conic.

=⇒ ν̄(1) = (1, 0, 1, 0, 1), ν̄(2) = (0, 1, 0, 1, 0)

In this article we mainly pay attention to the recombination problems, the irreducible
factorization of F then following with a fast multi-factor Hensel lifting (combined with
a partial fraction decomposition algorithm in the absolute case). The main idea is to
interpret the recombination problem as a cohomological problem of lifting sections.
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2.2. Solving recombinations via lifting sections

All schemes and properties (connectivity, irreducibility) are considered over the base
field k. We may think a point over a scheme X over a k as a collection of points in the
extension X̄ = X ⊗k k̄ that are conjugated under the Galois group of k̄/k.

Let C and L be the respective Zariski closures of the affine curves F = 0 and x = 0 to
the projective plane P2. Let

π : X → P2

be the weak embedded resolution of C (Kollár, 2007, Chap. 1.5, Thm 1.43) 1 . We denote
by C and L the respective strict transforms of C and L by π. The inclusion of the
zero-dimensional subscheme

Z := C ∩ L
into C induces a restriction morphism

α : H0(OC) ↪→ H0(OZ)

between the respective k-vector spaces of regular functions on C and Z. Note that both
vector spaces may be identified with the sets of locally constant functions on C and Z.
The map α is injective since Z has at least one point on each component of C. The
following two subsections are dedicated to show that the computation of the cokernel of
α permits to solve both the rational and the absolute recombination problems.

2.2.1. The rational case.

Since F (0, y) has degree d, Z is an affine zero-dimensional subscheme whose ring of
regular functions may be identified with the finite k-algebra

H0(OZ) =
k[x, y]

(x, F )
=

k[y]

(F (0, y))
. (1)

Since F (0, y) is separable, its rational factorization induces an isomorphism

H0(OZ) ' k[y]

(f1)
⊕ · · · ⊕ k[y]

(fn)
. (2)

Thus Z has n connected components (closed points) p1, . . . , pn corresponding to the
maximal ideals of the ring H0(OZ) generated by the fi’s. The natural inclusions

k ↪→ k[y]

(fi)
, i = 1, . . . , n

combined with (1) and (2) induce the inclusion

kn ⊂ H0(OZ),

kn being identified with the subspace of locally constant functions on Z that take value in
k, that is (ν1, . . . , νn) ∈ kn sends pi to νi (in general, a function on Z takes values in the
various residue fields k[y]/(fi)). The map α introduced before is related to recombinations
by the following lemma:

1 In the mentionned theorem, the field is assumed to be perfect. Although computing desingularization
over non perfect fields is much harder (Kollár, 2007, digression 1.49), the weak desingularization theorem
remains true over non perfect fields (Kollár, 2007, Chap. 1.8).
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Lemma 5. The vector subspace W ⊂ kn defined by

W := kn ∩ Im(α)

admits (ν(1), . . . , ν(s)) as reduced echelon basis (up to reordering).

Proof. By definition, ν ∈ W if and only if it’s the restriction to Z of a locally constant
k-valued function on C. Since C is smooth, it has s connected components C1 . . . , Cs
corresponding to the prime rational factors of F . Thus ν ∈ W if and only if ν is k-
valued and constant along Cj ∩ L for j = 1, . . . , s. We deduce that dimkW = s and
that ν(j) ∈ W for j = 1, . . . , s. Since the ν(j)’s have {0, 1}-coordinates and are pairwise
orthogonal vectors in kn, they form up to reordering the reduced echelon basis of W . 2

By Lemma 5, the recombination problem over k is reduced to compute first the rational
factorization of F (0, y) (inducing the inclusion kn ⊂ H0(OZ)), and then the cokernel of
α.

2.2.2. The absolute case.

The relations between locally constant functions and absolute factorization is explored
in (Duval, 1991) where the author determines one absolute factor a time from a basis
of the regular functions on C ×k k̄. We rather relate here regular functions on C to the
recombination algorithm in (Chèze-Lecerf, 2007) and we compute all irreducible factors
simultaneously by using multi-factor Hensel lifting. Let us first prove:

Lemma 6. We have equalities dimkH
0(OZ) = d and dimkH

0(OC) = s̄.

Proof. First equality is clear from (1). Since H0(OC) is a finite dimensional k-vector
space, we have

dimkH
0(OC) = dimk̄H

0(OC)⊗k k̄
Let C̄ := C ×k k̄ be the geometrical scheme associated to C by extending the base field
k to its algebraic closure k̄. We have (Liu, 2002, prop. 1.24 p.85)

H0(OC)⊗k k̄ = H0(OC̄).

Since C̄ is smooth, it’s the disjoint union of s̄ irreducible components C̄1 . . . , C̄s̄ corre-
sponding in an obvious way to the prime absolute factors of F . It follows that we have
an isomorphism of k̄-vector spaces

H0(OC̄) ' ⊕s̄j=1H
0(OC̄j

).

Since H0(OC̄j
) = k̄, we have dimk̄H

0(OC̄) = s̄ so that dimkH
0(OC) = s̄. 2

Let φ1, . . . , φd be the roots of F (0, y) in k̄. The identification (1) gives rise to the
multi-evaluation isomorphism

ev : H0(OZ)⊗k k̄
'−→ k̄d

ν 7−→ ν̄ := (ν(φ1), . . . , ν(φd)).
(3)
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The next lemma shows that solving absolute recombinations reduces to compute Im(α)
and to apply the evaluation map ev. We endow k̄d with its canonical basis.

Lemma 7. The vector subspace W̄ ⊂ k̄d defined by

W̄ := ev(Im(α)⊗k k̄)

admits (ν̄(1), . . . , ν̄(s̄)) as reduced echelon basis (up to reordering).

Proof. Let Z̄ := Z ×k k̄. The map ev induces an identification

k̄d = H0(OZ̄),

where ν̄ = (ν̄1, . . . , ν̄d) ∈ k̄d is identified with the locally constant function that sends
each closed point p̄i ∈ Z̄ to ν̄i. Since Z̄ contains at least one point of each connected
component of C̄, the restriction map

ᾱ : H0(OC̄) ↪→ H0(OZ̄)

is injective. By definition, W̄ = Im(ᾱ) so that dimk̄ W̄ = dimk̄H
0(OC̄) = s̄ by the

proof of Lemma 6. Each vector ν̄(j) being constant on C̄1 ∩ L̄, . . . , C̄s̄ ∩ L̄, it extends to
a function on C̄. So ν̄(j) ∈ W̄ for j = 1, . . . , s̄. Since the ν̄(j)’s have {0, 1}-coordinates
and are pairwise orthogonal in k̄d, they form up to reordering the reduced echelon basis
of W̄ . 2

3. Lifting sections using residues

The previous section shows that recombinations may be reduced to compute the cok-
ernel of the restriction morphism

α : H0(OC) ↪→ H0(OZ).

To this aim, we introduce residues. We refer the reader to (Lipman, 2011; Serre, 1988;
Tate, 1968; Vakil, 2008; Couvreur, 2009) for introductions of residues for curves and
surfaces over arbitrary fields.

Let ωC be the sheaf of regular differential 1-forms over C (the dualizing sheaf) and let
ωC(Z) be the sheaf of meromorphic 1-forms with polar divisor bounded by Z. Let p ∈ C
with residue field kp and let ψ ∈ ωC,p(Z) be a germ of meromorphic form at p. For any
uniformizer t of C at p, there exists a unique formal series h ∈ kp[[t]] such that

ψ =
h(t)dt

t
.

We define the residue of ψ at p as

resp ψ := Trp [h(0)],

where Trp : kp → k is the trace map. This definition does not depend on the choice of
the uniformizer (Serre, 1988). The map resp is k-linear and vanishes on regular forms.
In particular, if ν ∈ OZ,p has a local lifting ν̃ to OC,p, we check that the definition

resp(ν ψ) := resp(ν̃ ψ)
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does not depend on the choice of the lifting. Moreover, we check too from the definition
that for all ψ ∈ ωC,p(Z) we have

ψ ∈ ωC,p ⇐⇒ resp(ν ψ) = 0 ∀ ν ∈ OZ,p, (4)

which is the simplest realization of the local duality theorem (Lipman, 2011). We have
the following key result:

Proposition 8. There is an exact sequence of k-vector spaces

0 −→ H0(OC)
α−→ H0(OZ)

R−→ H0(ωC(Z))∨
β−→ H0(ωC)∨ −→ 0

where ∨ stands for the dual and where R associates to ν the linear form

Rν : ψ 7−→
n∑
i=1

respi(νψ).

In particular, dimH0(ωC(Z)) = g + d − s̄ where g is the geometric genus of C (sum of
the genus of the absolute irreducible components).

Proof. Let ωZ be the dualizing sheaf of Z, so that ωZ ' Hom(OZ , k). By (4), there is
a short exact sequence (a particular realization of the so-called adjunction formula (Liu,
2002, Thm 9.1.39))

0 −→ ωC −→ ωC(Z)
Res−→ ωZ −→ 0,

where the residue map Res is locally defined on an open set U ⊂ C as

ResU (ψ) : OZ(U) −→ k

ν 7−→
∑
p∈U

resp(νψ).

The associated long exact cohomology sequence is

0→ H0(ωC)→ H0(ωC(Z))
Res→ H0(ωZ)→ H1(ωC)→ H1(ωC(Z)). (5)

By the duality of Serre (Liu, 2002, Rem. 6.4.20 and 7.3.27) , we get isomorphisms

H1(ωC) ' H0(OC)∨ and H1(ωC(Z)) ' H0(OC(−Z))∨ = 0,

the last vanishing property because Z as at least one point on each connected component
of C. The dual sequence of (5) becomes

0→ H0(OC)
α→ H0(OZ)

R→ H0(ωC(Z))∨
β→ H0(ωC)∨ → 0

where R is dual to Res, that is

R : ν 7−→
(
ψ 7→

∑
pi∈Z

respi(νψ)
)
.

This shows the exact sequence of Proposition 8. This sequence induces equality

h0(ωC(Z)) = h0(ωC) + h0(OZ)− h0(OC) = g + d− s̄,
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last equality using Lemma 6 and using that h0(ωC) coincides with the sum g of the
geometric genus of the absolute irreducible components of C. 2

Remark 9. The inclusion Im(α) ⊂ ker(R) follows from the residue theorem that asserts
that ∑

p∈Cj

respψ = 0

for all connected component Cj of C and all rational 1-form ψ on C (Tate, 1968, Corollary
of Thm 3).

Remark 10. The equality dimH0(ωC(Z)) = g+d−s̄ given by Proposition 8 follows from
the theorem of Riemann-Roch for curves. This theorem is usually stated for irreducible
curves over k̄, but holds in the more general context of a not necessarily reduced or
irreducible projective curve over a field k (Liu, 2002, Thm 7.3.26).

4. Relations with adjoint polynomials

We relate now holomorphic forms with adjoint polynomials. We denote by S the set
of singular points of C, including all infinitely near points. For each p ∈ S, there is a
decomposition of π

X
π1−→ X̃p

πp−→ Xp
π2−→ P2

such that p is a closed point of the intermediary surface Xp and πp is the blow-up at

p (Kollár, 2007, Chap. 1.5). Let Ep be the exceptional divisor of πp and Êp its total
transform under π1. We denote by mp the multiplicity at p of the strict transform of C
under the map π2.

Definition 11. The adjoint divisor of F is the exceptional effective divisor

E :=
∑
p∈S

(mp − 1)Êp.

An adjoint curve of C is an effective divisor D ⊂ P2 that satisfies

π∗(D) ≥ E.

An adjoint polynomial of F of degree ≤ m is a polynomial giving the dehomogeneised
affine equation of an adjoint curve of degree m.

In other words, adjoints of F are those polynomials vanishing at the singular points
of C with high enough multiplicities. Adjoints carry out precious informations about the
geometry of C. In particular, it is well known (Fulton, 2004, Chap. 3) that they are deeply
related to the sheaf ωC of regular forms on the normalized curve. Let us be more precise.
We denote by

Adj(m) ⊂ k[x, y]
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the k-vector subspace generated by adjoint polynomials of F of degree ≤ m. We have
the following proposition:

Proposition 12. For all integers m ≤ 2, we have an isomorphism

Adj(d− 3 +m)
'−→ H0(ωC(mZ))

H 7−→ π∗
( Hdx

xm∂yF

)
|C
.

Proof. In order to relate adjoints with differential forms, we introduce the conductor

AC := HomOC (π∗OC ,OC)

of the normalization of C. It is an ideal sheaf of OC , related to the dualizing sheaf ωC of
C by the formula

π∗ωC = ωC ⊗OC AC

(see for instance Szpiro, 1979, p.25). Since the morphism π : C → C is affine we have

H0(C,ωC(mZ)) = H0(C, π∗(ωC(mZ))) = H0(C, ωC(mL)⊗AC), (6)

last equality following from the projection formula (recall that Z = C ∩L and π∗L = L).
Let A be the inverse ideal sheaf of AC under the restriction OP2 → OC . We have the
short exact sequence

0 −→ OP2(−C) −→ A −→ AC −→ 0. (7)

Tensoring (7) with the invertible sheaf Ω2
P2(C + mL), and using the adjunction formula

(Liu, 2002, Thm 9.1.37), we obtain the exact sequence

0 −→ Ω2
P2(mL) −→ Ω2

P2(C +mL)⊗A RP−→ ωC(mL)⊗AC −→ 0. (8)

Here, RP is the Poincaré residue map 2 , defined outside the singular locus of C as

RP
(Hdx ∧ dy

Fxm

)
=
( Hdx

xm∂yF

)
|C
. (9)

For m ≤ 2 and i = 0, 1, we have (Hartshorne, 1977, Theorem 5.1 p.225)

Hi(P2,Ω2
P2(mL)) = Hi(P2,OP2(m− 3)) = 0

which, combined with the long exact cohomological sequence of (8), gives an isomorphism

RP : H0(P2,Ω2
P2(C +mL)⊗A)

'−→ H0(C, ωC(mL)⊗AC). (10)

By (Szpiro, 1979, Proposition p.33), we have an isomorphism 3

2 The Poincaré residue is originally defined for complex manifolds, and is rather called 1-codimensional

residues over arbitrary fields (Couvreur, 2009).
3 We check that the irreducibility assumption made in (Szpiro, 1979, Proposition p.33) can be removed

since the proof is local.
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Adj(d− 3 +m)
'−→ H0(P2,Ω2

P2(C +mL)⊗A)

H 7−→ Hdx ∧ dy
Fxm

which combined with (6), (9) and (10) gives the isomorphism of Proposition 12. 2

Remark 13. The isomorphism of Proposition 12 for m = 0 and C irreducible is known
as the Gorenstein Theorem (Gorenstein, 1952) which asserts that the adjoint curves of
degree d− 3 cut out on C the complete canonical system of its normalization. For a nice
down-to-earth presentation of adjoints and conductors, see (Fulton, 2004).

Recall from the introduction that we define A ⊂ k[y] to be the image of the projection

Adj(d− 2) −→ k[y]

H 7−→ H(0, y).

Corollary 14. We have equality dimk A = d− s̄.

Proof. If H ∈ Adj(d− 2) satisfies H(0, y) ≡ 0, then H(x, y) = xH ′(x, y) for some poly-
nomial H ′. Since the line x = 0 does not contain any singularities of C, H ′ is necessarily
an adjoint of F of degree d − 3. In other words, we have an exact sequence of k-vector
spaces

0 −→ Adj(d− 3) −→ Adj(d− 2) −→ A −→ 0 (11)

where the first map is the injective ”multiplication by x” map and the second map is the
restriction to x = 0. It follows that

dim(A) = dimAdj(d− 2)− dimAdj(d− 3)

= h0(ωC(Z))− h0(ωC)

= d− s̄,

second equality using Proposition 12 and last equality using Proposition 8. 2

The proof of Theorem 4 follows.

Corollary 15. (Proof of Theorem 4). Given a basis of Adj(d − 2), we can compute a
basis of A within

O(d2(g + d− s̄)) ⊂ O(d4)

arithmetic operations over k.

Proof. Consider the matrixN whose set of rows is a basis of Adj(d−2) evaluated at x = 0,
expressed in the natural basis of k[y]. The complexity for building N is esesentially the
size of Adj(d−2), that is O(d2(g+d− s̄)) arithmetic operations. The matrix N has d−1
columns and g+d−s̄ rows (use Propositions 8 and 12). By (11), we have A = Im(N), and
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a basis ofA can be computed within the expected complexityO((d−1)(g+d−s̄)(d−s̄)ω−2)
(Storjohann, 2000, Theorem 2.10). We conclude with the well known inequalities g ≤
(d− 1)(d− 2)/2 and 2 < ω ≤ 3. 2

5. Recombinations follow

We have now all necessary information for solving recombinations. Let us consider
first the rational case.

Corollary 16. We have an exact sequence of k-vector spaces

0 −→ 〈ν(1), . . . , ν(s)〉 −→ kn
T−→ A∨

where T sends ν = (ν1, . . . , νn) to the linear map

H 7−→
n∑
i=1

νi

( ∑
fi(φ)=0

H(φ)

∂yF (0, φ)

)
.

Proof. By Lemma 5, we have

〈ν(1), . . . , ν(s)〉 = Im(α) ∩ kn

where we identify kn ⊂ H0(OZ) with the subspace of locally constant k-valued functions
on Z. Proposition 8 induces equality

Im(α) ∩ kn =
{
ν ∈ kn,

n∑
i=1

νirespi(ψ) = 0 ∀ ψ ∈ H0(ωC(Z))
}
.

Let us compute the involved residues. By Proposition 12, ψ ∈ H0(ωC(Z)) is equal to

ψ = π∗
( Hdx
∂yFx

)
|C

for a unique H ∈ Adj(d− 2). Let ÔC,pi be the completion of the regular local ring OC,pi
with respect to its maximal ideal associated to pi. The residue field of C at pi is equal to

kpi =
k[y]

(fi)
.

The map π being an isomorphism in a neighborhood of pi, we have an isomorphism

ÔC,pi
'−→ kpi [[t]]

π∗x 7−→ t

π∗y 7−→ a(t)

where a ∈ kpi [[t]] is the unique series such that a(0) is the residue class of y in kpi and
F (t, a(t)) ≡ 0. In such a local system of coordinates, ψ is equal to

ψ =
H(t, a(t))

∂yF (t, a(t))

dt

t

14



and it follows from the definition of residues that

respi(ψ) = Trpi

( H(0, a(0))

∂yF (0, a(0))

)
=

∑
fi(φ)=0

( H(0, φ)

∂yF (0, φ)

)
.

Corollary 16 follows. 2

Remark 17. We always have (1, . . . , 1) ∈ ker(T ). This is nothing else than the Lagrange
interpolation formula.

Let us now consider the absolute case.

Corollary 18. We have an exact sequence of k̄-vector spaces

0 −→ 〈ν̄(1), . . . , ν̄(s̄)〉 −→ k̄d
T̄−→ A∨ ⊗k k̄ −→ 0

where T̄ sends ν̄ = (ν̄1, . . . , ν̄d) to the linear form

H 7−→
d∑
i=1

ν̄i
H(φi)

∂yF (0, φi)
.

Proof. Apply Proposition 8 and repeat the proof of Corollary 16 over k̄, with the curve
C̄ replacing C. Surjectivity of T̄ follows from Corollary 14. 2

Remark 19. In (Chèze-Lecerf, 2007; Lecerf, 2007), the authors solve recombinations
using a system of O(d2) equations. Corollary 16 and Corollary 18 give a much smaller
number d− s̄ of equations for recombinations. Moreover, the map T̄ being surjective, d− s̄
is the expected minimal number of linear conditions for recombinations in the absolute
case.

6. Proofs of Theorems 1, 2 and 3.

We can now prove the three main theorems exposed in the introduction.

6.1. Proof of Theorem 1.

We suppose here that the field k supports univariate factorization. We obtain the
following algorithm.

Algorithm 1 (deterministic rational factorization)

Input: F ∈ k[x, y] that satisfies hypothesis (H).
Output: The rational factorization of F .

• Step 1. Compute a basis of A.
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• Step 2. If dimA = d− 1, F is irreducible. Otherwise, compute the irreducible factors
f1, . . . , fn of F (0, y) over k.

• Step 3. If n = 1, F is irreducible. Otherwise, build the matrix M of the map T of
Corollary 16 by using Newton identities.

• Step 4. Compute the reduced echelon normal basis of ker(M). We obtain the recom-
bination vectors ν(1), . . . , ν(s).

• Step 5. Compute the factorization of F (0, y) induced by the recombination vectors and
lift it to the rational factorization of F .

Proposition 20. (Proof of Theorem 1.) Algorithm 1 is deterministic and correct. Steps
3, 4 and 5 take at most

O(n(d− s̄)(d− s)ω−2 + d2) ⊂ O(dω)

arithmetic operations over k.

Proof. The algorithm is deterministic and correct thanks to Corollary 16. Let us describe
in more details the content and the complexity of steps 3 to 5.

Step 3. In order to build the matrix M , we have to compute

Trkpi

( H(y)

∂yF (0, y)

)
for all i = 1, . . . , n and for all H running a basis of A. Inversion of ∂yF (0, y) and multi-
plication by H in k[y]/(fi) take O(ni) operations in k. Then H/∂yF (0, y) ∈ k[y]/(fi) is
uniquely represented as a polynomial a(y) = a0 + · · ·+ ani−1y

ni−1 with coefficients in k
and

Trkpi

( H(y)

∂yF (0, y)

)
=

ni−1∑
j=0

ajTrkpi (yj). (12)

Thanks to the Newton identities, we can compute recursively the trace of yj from the
traces of smaller powers of y and from the coefficients of fi with j multiplications and j
additions. So we compute traces of all involved powers of y within O(n2

i ) operations over
k. Given these traces, and using (12), we compute the trace of H/∂yF with 2ni operations
for each H ∈ A. By Corollary 14, it follows that step 3 costs

∑n
i=1O(n2

i + 2ni(d− s̄)) ⊂
O(d2) operations over k.

Step 4. The matrix M has size (d − s̄) × n and rank d − s. We can compute the
reduced echelon normal basis of the kernel of M within O(n(d− s̄)(d−s)ω−2) operations
((Storjohann, 2000), Theorem 2.10).

Step 5. Given a vector ν(j) = (ν
(j)
i ) ∈ {0, 1}n of the reduced echelon basis, we com-

pute Fj(0, y) =
∏
fi(y)ν

(j)
i for each rational irreducible factor Fj of F . This requires

Õ(deg(Fj(0, y))) operations by the sub-product tree technique (Lecerf, 2007, proof of

Prop. 6), so a total cost of Õ(d) operations. To compute the Fj ’s, it’s now enough to
lift the induced equality F (0, y) = F1(0, y) · · ·Fs(0, y) modulo (x) up to precision mod-

ulo (xd+1). This costs Õ(d2) operations by using Newton quadratic iteration (Gathen-
Gerhard, 2003, Theorem 15.18). 2
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6.2. Proofs of Theorems 2 and 3

In the absolute case, the delicate point is that Corollary 18 does not permit to solve
recombinations with linear algebra over k. Moreover, it neither permits to describe the
smallest finite extensions over which the irreducible absolute factors of F are defined.
To solve this problem, we rather rely our approach with the algorithms 8 and 9 in
(Chèze-Lecerf, 2007), where the authors use the absolute partial fraction decomposition
algorithm of Lazard-Rioboo-Trager (Lazard-Rioboo, 1990).

Let φ be the residue class of y in the ring A := k[y]/(F (0, y)). Any element b ∈ A can
be uniquely represented as a finite sum

b =

d−1∑
i=0

biφ
i

where coeff(b, φi) := bi belongs to k. We introduce

L :=
{
v ∈ kd,

d∑
i=1

vi coeff
( H(φ)

∂yF (0, φ)
, φi−1

)
= 0 ∀ H ∈ A

}
.

The vector space L is related to the absolute recombinations by the following lemma.

Lemma 21. Let V be the Vandermonde matrix of the roots φ1, . . . , φd of F (0, y). We
have an isomorphism

V t : 〈ν̄(1), . . . , ν̄(s̄)〉 '−→ L⊗k k̄.
In particular, we have an isomorphism of k-vector spaces

B : Im(α)
'−→ L

where B = (Trφi+j)i,j=0,...,d−1, with Tr : A→ k the usual trace map.

Proof. We follow the proof of Proposition 4 in (Chèze-Lecerf, 2007). Let (v1, . . . , vd) =
V t(w1, . . . , wd) and let b ∈ A. We have

d∑
i=1

vi coeff(b, φi−1) =

d∑
i=1

( d∑
j=1

wjφ
i
j

)
coeff(b, φi−1)

=

d∑
j=1

wj
( d∑
i=1

coeff(b, φi−1)φij
)

=

d∑
j=1

wjb(φj).

The first point then follows from Corollary 18 by taking b = H(φ)/∂yF (0, φ). The second
point follows from Lemma 7 since V is the matrix of the evaluation map and B = V tV
is the matrix of traces. 2

We can now rely on the factorization algorithms developed by Chèze-Lecerf in the abso-
lute case. We refer the reader to (Chèze-Lecerf, 2007) for details on the relations between
absolute recombinations, absolute partial fraction decomposition, absolute Hensel lifting
and absolute factorization.
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Algorithm 2 (deterministic absolute factorization).

Input: F ∈ k[x, y] that satisfies hypothesis (H), with k a field of characteristic 0 or
greater than d(d− 1).

Output: The absolute factorization of F .

• Step 1. Compute a basis of A. If dim A = d− 1, F is absolutely irreducible.
• Step 2. Compute a basis of L.
• Step 3. Call Algorithm 8 in (Chèze-Lecerf, 2007) with input F and the basis of L.

Proposition 22. (Proof of Theorem 2.) Algorithm 2 is deterministic and correct. Steps
2 and 3 take at most

Õ(d(d− s̄)ω−1 + s̄d3) ⊂ Õ(d4)

arithmetic operations over k.

Proof. The algorithm is correct thanks to Lemma 21 combined with Proposition 4 p.15
and Theorem 5 p.15 in (Chèze-Lecerf, 2007). By definition, we have L = ker(N), where
the matrix N is built from a basis of A using one inversion in A and (d−s̄) multiplications
in A, so O(d(d− s̄)) operations over k. Then, computing a basis of L = ker(N) requires

O(d(d− s̄)ω−1) operations over k. Finally, step 3 costs Õ(s̄d3) operations over k thanks
to Proposition 10 p.24 in (Chèze-Lecerf, 2007). 2

The cost of Algorithm 2 is dominated by the separation of residues in Algorithm 8 of
(Chèze-Lecerf, 2007) that ensures that the call to the Lazard-Rioboo-Trager algorithm
returns a correct answer. If we rather deal with a random linear combination of the
vectors of a basis of L, we obtain a probabilistic algorithm with smaller complexity.

Algorithm 3 (probabilistic absolute factorization).

Input: F ∈ k[x, y] that satisfies hypothesis (H), with k a field of characteristic 0 or
greater than d(d− 1).

Output: The absolute factorization of F .

• Step 1. Compute a basis of A. If dim A = d− 1, F is absolutely irreducible.
• Step 2. Compute a basis of L.
• Step 3. Choose c ∈ ks̄, where s̄ = d− dim(A).
• Step 4. Call Algorithm 9 in (Chèze-Lecerf, 2007) with input F , the basis of L and c.

Proposition 23. (Proof of Theorem 3.) Algorithm 3 either stops prematurely or return
a correct answer. Moreover, there exists a polynomial S ∈ k̄[C1, . . . , Cs̄] of degree at most
s̄(s̄− 1) such that the answer is correct whenever S(c) 6= 0. In any cases, steps 2, 3 and
4 take at most

Õ(d(d− s̄)ω−1 + d
ω+3
2 )

arithmetic operations over k.
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Proof. The proof is the same as for Proposition 22, using now Proposition 11 p.25 in
(Chèze-Lecerf, 2007). 2

Remark 24. The restriction hypothesis on the characteristic of k ensures the possibility
to separate the residues and to apply a fast absolute multi-factor Hensel lifting in (Chèze-
Lecerf, 2007, Algorithm 9).

7. Two simple examples

Let us illustrate our main results on two simple examples of small degrees.

Example 1. Suppose we want to compute the rational and absolute factorization of

F = y5 + 3y4 + x2y3 + 2y3 − 2x3y2 + 3x2y2 − y2 + 3x2y − 3y − 2x5 + 2x3 + 2x2 − 2

over Q. The univariate polynomial f(y) := F (0, y) factorizes over Q as

f = (y − 1) (y + 1) (y + 2)
(
y2 + y + 1

)
,

and we have 4 modular factors to recombine. The projective curve C of F is a degree 5
curve with 6 nodes that all lie in the affine plane, solutions of the algebraic system

S = {F = ∂xF = ∂yF = 0}.

We find here that the Q-vector space Adj(d − 2) = Adj(3) of degree 3 polynomials
vanishing at these 6 points has dimension

dim Adj(3) =
(3 + 1)(3 + 2)

2
− 6 = 4,

with basis (
y3 + 2y2 + 3y − 2x3 − x2 + 3 , 3y2 − x2y + 4y + 2x3 + 2 ,

y3 + 2xy2 + 3y2 + 3y − 2x+ 2 , y3 + 4y2 + 3y − 2x3 + x2 + 1
)
.

Taking reduction modulo (x), we find that A has dimension 3 with Q-basis

A = 〈y3 + 2y2 + 3y + 3, 3y2 + 4y + 2, y3 + 4y2 + 3y + 1〉.

We deduce from Corollary 14 that F admits

s̄ = d− dim A = 2

irreducible absolute factors, hence s ∈ {1, 2} irreducible factors over Q.

To find the factors over Q, we need to construct the matrix M of the map T of
Proposition 25. Let H ∈ A. For f1 = y − 1 the first factor of f , we have equality

Trf1

(H
f ′

)
=
H(1)

f ′(1)
.

For f2 = y + 1 and f3 = y + 2, we find in the same way

Trf2

(H
f ′

)
=
H(−1)

f ′(−1)
and Trf3

(H
f ′

)
=
H(−2)

f ′(−2)
.
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For f4 = y2 + y + 1, we find

Trf4

(H
f ′

)
= Trf4(h)

where h is the reduction of H/f ′ modulo (f4). Since f4 has degree 2, h has degree 1 and
by linearity, it’s enough to compute Trf4(yi) for i = 0, 1. We have here

Trf4(1) = 2 and Trf4(y) = −1.

We deduce in that way that the 3× 4 matrix of the map T in Proposition 25 is

M =


− 1

2
1
2

1
3 − 1

3

− 1
2

1
2 − 2

3
2
3

1
2 − 1

2
1
3 − 1

3


We find that

ker(M) = 〈(1, 1, 0, 0), (0, 0, 1, 1)〉

so that F has s = 2 irreducible factors F1 and F2 over Q thanks to Proposition 25.
Moreover, the modular factors recombine as

F1(0, y) = f1f2 = y2 − 1 and F2(0, y) = f3f4 = y3 + 3y2 + 3y + 2.

Using a multifactor Hensel lifting up to precision (x6) (it’s enough to take 6 = d + 1),
we obtain finally F = F1F2 where

F1 = y2 + x2 − 1 and F2 = y3 − 2x3 + 3y2 + 3y + 2.

Since we already know that s̄ = 2, it follows that F = F1F2 represents too the absolute
irreducible factorization of F . Note that the projective curves with affine equations F1 = 0
and F2 = 0 have respective genus 0 and 1. Thus the total geometric genus of the curve
C of F is g = 1, according to the formula

dim Adj(d− 2) = 4 = g + d− s̄

predicted by Proposition 8 and Proposition 12.

Example 2. Let k = Q. Suppose that we want to compute the rational and absolute
factorization of

F (x, y) = y4 − 2xy2 − 4x3y + 8x2y − 4xy − x4 + 6x3 − 11x2 + 8x− 2

We find here that F (0, y) = y4 − 2 is irreducible over Q so that F is irreducible over Q
too. Let us look at its absolute factorization. We find that the projective curve C of F
has 4 singular points over Q̄(

(
1−
√

3 i

2
, 1), (

√
3 i+ 1

2
, 1), (

1

2
,−1

2
), (1, 0)

)
and we find that dimQ Adj(2) = 2, with basis

Adj(2) = 〈y2 − xy + x− 1, 2y2 − xy + x2 − 1〉Q.

Taking reduction modulo (x), we find that dimQ A = 2, with basis

A = 〈y2 − 1, 2y2 − 1〉Q.
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By Corollary 14, it follows that F admits exactly

s̄ = d− dim A = 2.

irreducible absolute factors. To get these factors, there remains to compute a basis of the
2-dimensional vector space L introduced in Subsection 6.2. To this aim we compute the
residue classes of H(y)/∂yF (0, y) modulo (y4 − 2) for H running over a basis of A. We
find that

y2 − 1

4y3
≡ y3 − y

8
mod (y4 − 2) and

2y2 − 1

4y3
≡ 2y3 − y

8
mod (y4 − 2)

so that

L = ker

0 − 1
8 0 1

8

0 − 1
8 0 1

4

 = 〈(1, 0, 0, 0), (0, 0, 1, 0)〉.

Then we call Algorithm 8 in (Chèze-Lecerf, 2007) with input F and the basis of L. We
find the two absolute irreducible factors

F =
(
y2 − t x y − t x2 + x2 + 2 t x− x− t

) (
y2 + t x y + t x2 + x2 − 2 t x− x+ t

)
,

where t is the residue class of y in Q[y]/(y2 − 2).

8. The case F (0, y) non separable

When F (0, y) is not separable modulo (x), we are tempted to choose another fiber
x = a for which F (a, y) that satisfies hypothesis (H). There are two main reasons to
develop a recombination algorithm along a critical fiber. First, when the field k has small
positive characteristic, a regular fiber may not exist. Second, we show here that working
along a singular fiber may in fact be an opportunity to speed-up the algorithm.

In order to simplify, we suppose here that k = k̄. We suppose too that F (0, y) has
degree d (the general case follows easily by computing residues at y =∞).

Our results generalise well to the non separable case, the main difference being related
to the computation of residues. Let Z = C ∩ L where L = π∗(L). In contrast to the
previous sections, L and Z need not to be reduced anymore. The support of Z consists
now in r ≤ d closed points p1, . . . , pr in one-to-one correspondance with the irreducible
analytic branches of C along the line L. The recombination vectors may now be defined
in the smaller ambient space kr, where µ(j) ∈ kr is defined to have ith coordinate equal
to 1 if pi ∈ Cj and equal to 0 otherwise. By identifying kr with the vector subspace of
H0(OZ) of locally constant functions on Z with values in k and with zero nilpotent part,
we obtain the analoguous of Lemma 5

〈ν(1), . . . , ν(s)〉 = Im(α) ∩ kr, (13)

where α : H0(OC)→ H0(OZ) still stands for the restriction map. We obtain the following
generalization of Corollary 16:
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Proposition 25. We have an exact sequence of k-vector spaces

0 −→ 〈ν(1), . . . , ν(s)〉 −→ kr
T−→ A∨

where T sends ν = (ν1, . . . , νr) to the linear map

H 7−→
r∑
i=1

νi respi

(
π∗
(H(y)dy

F (0, y)

))
.

Proof. The exact sequence of Proposition 8 remains valid in this new context. Combined

with (13), we obtain that 〈ν(1), . . . , ν(s)〉 = ker T̃ where T̃ : kr → H0(ωC(Z))∨ sends

ν = (ν1, . . . , νr) to the linear map

ψ 7−→
r∑
i=1

νirespi(ψ).

The main difference concerns the computation of residues. Let ψ ∈ H0(ωC(Z)). By the

proof of Proposition 12, we have

ψ = RPC(Ψ), Ψ = π∗

(
H(x, y)dx ∧ dy

xF (x, y)

)
∈ H0(Ω2

X(C + L))

for a unique H ∈ Adj(d − 2), and where RPC stands for the Poincaré residue along C.

Let p ∈ C ∩ L. By (Couvreur, 2009, Theorem 6.3 and Remark 6.9), we obtain equality

resp(ψ) = resp

(
RPC(Ψ))

)
= resp

(
RPL(Ψ))

)
.

where the last residue stands for residue of 1-form on L. Since L = π∗(L) and the Poincaré

residue commutes with the pull-back, we obtain equality

RPL

(
π∗

(
H(x, y)dx ∧ dy

xF (x, y)

))
= π∗

(
RPL

(
H(x, y)dx ∧ dy

xF (x, y)

))
= π∗

(
H(0, y)dy

F (0, y)

)
.

Proposition 25 follows. 2

So as soon as the curve C has a small number of irreducible branches intersecting L,

Proposition 25 permits to solve the recombination problem in a smaller ambient space.

The price to pay is that we can a priori not compute residues directly in P2 as in Section

2, but we may really need to compute residues in X, using local coordinates or Puiseux

series. Nevertheless, in the important case of C locally irreducible at (0, yp) ∈ C∩L, there

is exactly one point p ∈ C such that π(p) = (0, yp) and the residue can be computed

directly in P2:

resp

(
π∗
(H(y)dy

F (0, y)

))
= resyp

(H(y)dy

F (0, y)

)
.

Of course yp may be now be a multiple root of F (0, y) so the residue computation may

involve higher order derivatives of H and F .
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Example. Let us illustrate Proposition 25 on a simple example. Suppose that we want

to factorize

F (x, y) = y5 + y4 − xy3 − y3 − 2xy2 − y2 + x2 + xy + x.

over Q. The irreducible factorization of F mod (x) is

F (0, y) = y2(y + 1)2(y − 1),

with two double roots −1 and 0 and one simple root 1. Since ∂xF (0,−1) and ∂xF (0, 0) do

not vanish, the curve C is smooth and tangent to L at these two points, and transversal

to L at (0, 1). In particular, C has only 3 irreducible branches intersecting L at distinct

points and the recombinations will hold in the ambient space k3 rather than in the bigger

space k5 inherent to a choice of a regular fiber.

We have here

Adj(d− 2) = 〈y3 − y − 1, y2 − x, , y3 − xy〉
from which it follows that

A = 〈y + 1, y2, y3〉.

By Lemma 6, the curve C has deg(F )− dim(A) = 2 absolute irreducible components. Let

H ∈ A. Since F is locally irreducible at (0, 0), we have equality

res0

(H(y)dy

F (0, y)

)
= res0

( H(y)dy

y2(y + 1)2(y − 1)

)
= H ′(0) +H(0).

In the same way, a simple calculation gives

res−1

(H(y)dy

F (0, y)

)
=
−2H ′(−1)− 5H(−1)

4
and res1

(H(y)dy

F (0, y)

)
=

H(1)

4
.

We deducesthat the 3× 3 matrix of the map T in Proposition 25 is

M =


−1/2 −1/4 −1/4

0 0 0

1/2 1/4 1/4


so that ker(M) = ((0, 1, 0), (1, 0, 1)). We deduce the irreducible rational decomposition

C = C1 ∪ C2

where C1 is a conic tangent to L at (0, 0) and C2 is a (smooth) cubic tangent to L at

(0, 1) and transversal to L at (0,−1).

x=0
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Since the induced factors of F are coprime modulo (x), we can compute them use a
multifactor Hensel lifting (Gathen-Gerhard, 2003, Algorithm 15.17) up to a sufficiently
high precision (mod (x3) in our case). We obtain finally

F (x, y) = (y2 − x)((y + 1)2(y − 1)− x).

In summarize, we have shown here that working along a critical fiber may be an
opportunity to speed-up the algorithm, at least when F satisfies the weaker hypothesis

(H′) C is analytically irreducible at each point of C ∩ L.

First, the univariate factorization of F (0, y) is faster since it is reduced to a fast separable
factorization (Lecerf, 2008) plus some univariate factorizations of smaller degrees. Second,
recombinations are faster since they hold in a smaller ambient space of dimension the
number of distinct roots of F (0, y) (or irreducible factors in the rational case). This fact
is well illustrated in a previous work of the author (Weimann, 2010) who developed a
lifting and recombination algorithm based on the toric resolution of the singularities of
C along the line at infinity.

Remark 26. We can show that under hypothesis (H ′), building the matrix of the
map T has the same cost in the separable and non separable cases. The fact that the
computations of the residues may involve fi-adic expansions with higher precision for each
irreducible factors fi of F (0, y) is compensed by the fact that the sum of the degrees of
the fi’s decreases.

Remark 27. Although Proposition 25 still permit to solve recombinations even when
F does not satisfy (H ′), the problem resides in the fact that the irreducible factors of
F may not be coprime modulo (x) and can not be computed with Hensel’s lemma. This
problem will be explored in a further work.

9. Don’t touch the cusps

It turns out that the computation of A does not necessarily require to compute the
all resolution of singularities of C. Namely, let us consider the factorization of π

X −→ X0
π0−→ P2

where π0 is the minimal composition of blow-ups under which the strict transform C0 of
C is every where locally irreducible. Then we can check that all our results (Lemmas 5, 6,
7 and the key Proposition 12) remain valid with C0 replacing C and with the arithmetic
genus pa(C0) ≥ g of C0 replacing the geometric genus of C (the proofs mainly only use
that the irreducible and connected components of C coincide). Then, we check easily
that there is an exact sequence

0 −→ Adj0(d− 3)
×x−→ Adj0(d− 2)

x=0−→ A −→ 0
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where Adj0(k) is defined similarly as Adj(k) with the map π0 replacing π in Definition
11. For instance, we need not to desingularize cusps for computing A, which is of course
natural from our factorization point of view. Note that there are easy local irreducibil-
ity sufficient criterions that can be directly read off from the Newton polygon of the
singularity (for cusps for instance).

10. Conclusion

We have established the bridge between locally constant functions (Duval, 1991; Ragot,
1997) and lifting and recombinations algorithms (Lecerf, 2007; Chèze-Lecerf, 2007). We
have shown that the vector space A of adjoint polynomials modulo (x) allows to recom-
bine modular factors without using Hensel lifting and with the expected number of linear
equations. Unfortunately, computing A using all adjoint polynomials uses too strongly
the geometry of singularities and a priori doesn’t lead a better factorization algorithm.
So the question is:

“Is there an efficient way to compute a basis for A?”

Maybe such a way exists for some particular polynomials, for instance if the irreducible
components are smooth and intersect in few points.

Finally, we discussed the possibility of speed-up the algorithm when F (0, y) is not sep-
arable, an approach that hasn’t been fully explored yet. Our general feeling is that it may
be promising to develop some intermediary algorithms based on the resolution of only
some of the singularities, in the vein of (Weimann, 2010) that uses the toric resolution
of the singularities at infinity. In any cases, the power of using singularities for factor-
ization depends strongly on complexity issues in the algorithmic theory of singularities,
especially on the Newton-Puiseux algorithm.
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