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Motivations and results



Motivation

I K a �eld.

I F ∈ K[x , y ] a square-free polynomial.

I C ⊂ P2 the projective curve de�ned by F .

Question : What are the relations between the resolution of

singularities of C and the factorization of F ?



Adjoints Polynomials

De�nition : H ∈ K[x , y ] is an adjoint polynomial of F if it

vanishes with order at least

ordp(H) ≥ ordp(F )− 1,

at each singular point p of C (including in�nitely near ones).

I Adjn(F ) ⊂ K[x , y ] generated by adjoints of degree ≤ n.

I An(F ) ⊂ K[y ] generated by mod (x) adjoints of degree ≤ n.



Example of a degree 5 curve (I)
A cubic union a conic

F2=0

F1=0

.
...

. .

Adj1(F ) = 0

Adj2(F ) = 〈F2〉
Adj3(F ) = 〈F1,F2, xF2, yF2〉
A3(F ) = 〈F1(0, y),F2(0, y), yF2(0, y)〉



Examples of a degree 5 curve (II)
A conic union three lines

F1=0

F2=0
F3=0

F4=0

. .
.

.
.

..
.

.

Adj1(F ) = 0

Adj2(F ) = 0

Adj3(F ) = 〈F2F3F4〉.



Main result

Suppose F (0, y) monic squarefree of degree d = deg(F ).

Theorem 1 Given the factorization of F (0, y) over K and given a

basis of Ad−2(F ), one computes the rational factorization of F

within O(dω) arithmetic operations over K.

Remark The actual complexity for factoring bivariate polynomials

belongs to O(dω+1) (Lecerf et al., 2007).



Recombinations using adjoint polynomials

We assume for simplicity that K is algebraically closed.



The recombination problem

{
F (x , y) = F1(x , y) · · ·Fs(x , y)

F (0, y) = (y − α1) · · · (y − αd).

Recombinations : Determine the vectors µi = (µij) ∈ {0, 1}d induced
by relations

Fi (0, y) =
d∏

j=1

(y − αj)
µij , i = 1, . . . , s.

=⇒

{
µ1 = (1, 0, 1, 0, 1)

µ2 = (0, 1, 0, 1, 0)



Degree d-2 adjoints mod (x) ⇐⇒ Recombinations

Linearization of recombinations : Determine equations and compute
the reduced echelon basis of the vector subspace

W := 〈µ1, . . . , µs〉 ⊂ Kd .

Theorem 2 One has an exact sequence of K-vector spaces

0 −→W −→ Kd A−→ Ad−2(F )v −→ 0

where

A =

(
H(α)

∂yF (0, α)

)
F (0,α)=0, H∈Ad−2(F )

�Computing degree d − 2 adjoint polynomials modulo (x) and

solving recombinations are two equivalent problems.�



Example

• Let F (x , y) = y5 − xy3 − xy2 − 3y3 + 2xy + x2 − 2y . One computes{
F (0, y) = (y − 2)(y − 1)y(y + 1)(y + 2)

Ad−2(F ) = 〈y , y2 − 1, y3〉

(e.g. using conductor in integral closure). One obtains

A =
1

24

 2 −4 0 4 −2
3 0 6 0 3
−8 −4 0 4 8

 .

• So ker(A) = 〈(1, 0, 1, 0, 1), (0, 1, 0, 1, 0)〉, solving recombinations :

F = F1F2, F1(0, y) = (y − 2)y(y + 2), F2(0, y) = (y − 1)(y + 1).

F2=0 F1=0

x=0

• There only remains to lift the induced modular factorization :

F (0, y) = F1(0, y)× F2(0, y)
Hensel
=⇒ F (x , y) = (y3 − 4y − x)(y2 − 1− x).



Algorithm and complexity follows

• Recombinations : Reduced echelon basis of the d × (d − s) matrix A

of maximal rank over K.

Requires O(d(d − s)ω−1) ⊂ O(dω) operations.

• Factorization : Hensel lifting with precision degx(F ) + 1.

F (0, y) = F1(0, y) · · ·Fs(0, y)

=⇒ F (x , y) = F1(x , y) · · ·Fs(x , y).

Requires Õ(d2) ⊂ O(dω) operations. �



Proof of Theorem 2

One wants to prove the exact sequence

0 −→ W −→ Kd A−→ Ad−2(F )v −→ 0



Disconnect the components

I π : X → P2 the embeded resolution of singularities of C
I C and L the strict transforms of C and x = 0.

. .
x=0

F1=0

F2=0

L

C1

C2

I The irreducible factors of F are now one-to-one with the

connected components C1, . . . ,Cs of C .



Reformulate the recombination problem

• The Ci 's and the pj 's being connected components of C and

C ∩ L one has :

H0(OC ) ' H0(OC1)⊕ · · · ⊕ H0(OCs
) ' Ks ' W

H0(OC∩L) ' H0(O{p1})⊕ · · · ⊕ H0(O{pn}) ' Kd

• One can identi�y the inclusion 0 −→W −→ Kd with the

restriction map

0 −→ H0(OC )
ρ−→ H0(OC∩L)

• One needs now to compute the cokernel of ρ.



The key result

Proposition 1 One has an exact sequence

0→ H0(OC )
ρ−→ H0(OC∩L)

R−→ H0(ΩC (L))v −→ H0(ΩC )v → 0

where

R : (λi )i 7−→
(

Ψ 7→
n∑

i=1

respi (λiΨ)
)
.

In particular, dimH0(ΩC (L)) = g + d − s, with g the genus of C.

Proof : Uses Koszul resolution, Serre duality and the residue theorem
that says that any rational 1-form Ψ on C satis�es∑

p∈Cj

resp(Ψ) = 0.



Relation with adjoint polynomials (and Theorem 2 follows)

• One has a commutative diagramm with vertical isomorphisms.

H0(OC ) ↪→ H0(OC∩L) → H0(ΩC (L))v → H0(ΩC )v → 0

↓ ↓ ↓ ↓

W ↪→ Kd → Adjd−2(F )v
β→ Adjd−3(F )v → 0

• The map β is dual of the �multiplication by x� map so that

ker(β) = Ad−2(F )v .

• The exact sequence

0→W −→ Kd A−→ Ad−2(F )v → 0

follows, the matrix A being computed from basic residue calculus. �



Is F (0, y) non square-free an opportunity ?

Just one example...



• Let F (x , y) = y5 − y4 − xy3 − y3 + y2 + x2 + xy − x . One has

F (0, y) = (y − 1)2y2(y + 1).

• The curve C has only 3 branches intersecting x = 0 (with 2 tangents) and
recombinations only involve 3 unknowns instead of 5=deg (F).

• Let
A :=

(
resα

[H(y)dy

F (0, y)

])
F (0,α)=0, H∈Ad−2(F )

.

• One has W = ker(A), but the residues now depend on higher derivatives :

res1

[ H(y)dy

(y − 1)2y2(y + 1)

]
=

H ′(1)− H(1)

4
.

• One obtains here Ad−2(F ) = 〈y − 1, y2, y3〉 and ker(A) = 〈(1, 0, 1), (0, 1, 0)〉.

x=0



Conclusion

Factorization
O(dω)⇐⇒ Adjoints mod (x)

...So what ?



Hensel lifting vs adjoint polynomials

Via Hensel lifting : O(dω+1) (Lecerf, Belabas-Van Hoeij et al.)

1. Factorization modulo (x).

2. Factorization modulo (x2d) via Hensel.

3. Linear system d ×O(d2) over K.

4. Factorization in K[x , y ] via Hensel.

Via adjoint polynomials : O(dω) + computation of Ad−2(F ).

1. Factorization modulo (x).

2. Adjoint polynomials modulo (x).

3. Linear system d × (d − s) over K.

4. Factorization in K[x , y ] via Hensel.



Factoring using adjoint polynomials ?

Question : Can we compute degree d − 2 adjoints mod (x) faster than
the actual O(dω+1) for factorization ?

Answer : Fast computation of all adjoint polynomials is enough since

Adjoints
O(gdω−1)

=⇒ Adjoints mod (x)

Not clear... One expects a priori the inclusions

Factorization ⊂ Desingularization (integral closure)

⊂ Adjoints computation (conductor).

(' Newton-Puiseux cost, Õ(d5log(p)) for K = Fp, Poteaux-Rybowitch).



Nevertheless...

Philosophy : The complexity of "factoring using adjoints mod (x)" is
related to that of "discriminant-integral closure-conductor".

...Is this approach interesting for some particular cases ?

I C transversal union of smooth curves ?

F2=0

F1=0

.
...

. .

I Few intersection points ? (extreme = d concurring lines)

I Symetry hypothesis ?

I ? ? ?

Thank you for your attention


