Factoring polynomials using singularities

Martin Weimann

RISC

24/11/2011

Motivations and results

Motivation

- \mathbb{K} a field.
- $F \in \mathbb{K}[x, y]$ a square-free polynomial.
- $\mathcal{C} \subset \mathbb{P}^{2}$ the projective curve defined by F.

Question : What are the relations between the resolution of singularities of \mathcal{C} and the factorization of F ?

Adjoints Polynomials

Definition : $H \in \mathbb{K}[x, y]$ is an adjoint polynomial of F if it vanishes with order at least

$$
\operatorname{ord}_{p}(H) \geq \operatorname{ord}_{p}(F)-1
$$

at each singular point p of \mathcal{C} (including infinitely near ones).

- $\operatorname{Adj}^{n}(F) \subset \mathbb{K}[x, y]$ generated by adjoints of degree $\leq n$.
- $\mathcal{A}^{n}(F) \subset \mathbb{K}[y]$ generated by $\bmod (x)$ adjoints of degree $\leq n$.

Example of a degree 5 curve (I)

A cubic union a conic

$$
\begin{aligned}
\operatorname{Adj}^{1}(F) & =0 \\
\operatorname{Adj}^{2}(F) & =\left\langle F_{2}\right\rangle \\
\operatorname{Adj}^{3}(F) & =\left\langle F_{1}, F_{2}, x F_{2}, y F_{2}\right\rangle \\
\mathcal{A}^{3}(F) & =\left\langle F_{1}(0, y), F_{2}(0, y), y F_{2}(0, y)\right\rangle
\end{aligned}
$$

Examples of a degree 5 curve (II)

A conic union three lines

$$
\begin{aligned}
A d j^{1}(F) & =0 \\
\operatorname{Adj}^{2}(F) & =0 \\
\operatorname{Adj}^{3}(F) & =\left\langle F_{2} F_{3} F_{4}\right\rangle
\end{aligned}
$$

Main result

Suppose $F(0, y)$ monic squarefree of degree $d=\operatorname{deg}(F)$.

Theorem 1 Given the factorization of $F(0, y)$ over \mathbb{K} and given a basis of $\mathcal{A}^{d-2}(F)$, one computes the rational factorization of F within $\mathcal{O}\left(d^{\omega}\right)$ arithmetic operations over \mathbb{K}.

Remark The actual complexity for factoring bivariate polynomials belongs to $\mathcal{O}\left(d^{\omega+1}\right) \quad$ (Lecerf et al., 2007).

Recombinations using adjoint polynomials

We assume for simplicity that \mathbb{K} is algebraically closed.

The recombination problem

$$
\left\{\begin{array}{l}
F(x, y)=F_{1}(x, y) \cdots F_{s}(x, y) \\
F(0, y)=\left(y-\alpha_{1}\right) \cdots\left(y-\alpha_{d}\right)
\end{array}\right.
$$

Recombinations: Determine the vectors $\mu_{i}=\left(\mu_{i j}\right) \in\{0,1\}^{d}$ induced by relations

$$
F_{i}(0, y)=\prod_{j=1}^{d}\left(y-\alpha_{j}\right)^{\mu_{i j}}, \quad i=1, \ldots, s
$$

$$
\Longrightarrow\left\{\begin{array}{l}
\mu_{1}=(1,0,1,0,1) \\
\mu_{2}=(0,1,0,1,0)
\end{array}\right.
$$

Degree d-2 adjoints $\bmod (x) \Longleftrightarrow$ Recombinations
Linearization of recombinations: Determine equations and compute the reduced echelon basis of the vector subspace

$$
W:=\left\langle\mu_{1}, \ldots, \mu_{s}\right\rangle \subset \mathbb{K}^{d}
$$

Theorem 2 One has an exact sequence of \mathbb{K}-vector spaces

$$
0 \longrightarrow W \longrightarrow \mathbb{K}^{d} \xrightarrow{A} \mathcal{A}^{d-2}(F)^{V} \longrightarrow 0
$$

where

$$
A=\left(\frac{H(\alpha)}{\partial_{y} F(0, \alpha)}\right)_{F(0, \alpha)=0, H \in \mathcal{A}^{d-2}(F)}
$$

"Computing degree $d-2$ adjoint polynomials modulo (x) and solving recombinations are two equivalent problems."

Example

- Let $F(x, y)=y^{5}-x y^{3}-x y^{2}-3 y^{3}+2 x y+x^{2}-2 y$. One computes

$$
\left\{\begin{array}{l}
F(0, y)=(y-2)(y-1) y(y+1)(y+2) \\
\mathcal{A}^{d-2}(F)=\left\langle y, y^{2}-1, y^{3}\right\rangle
\end{array}\right.
$$

(e.g. using conductor in integral closure). One obtains

$$
A=\frac{1}{24}\left(\begin{array}{ccccc}
2 & -4 & 0 & 4 & -2 \\
3 & 0 & 6 & 0 & 3 \\
-8 & -4 & 0 & 4 & 8
\end{array}\right)
$$

- So $\operatorname{ker}(A)=\langle(1,0,1,0,1),(0,1,0,1,0)\rangle$, solving recombinations :

$$
F=F_{1} F_{2}, \quad F_{1}(0, y)=(y-2) y(y+2), \quad F_{2}(0, y)=(y-1)(y+1)
$$

- There only remains to lift the induced modular factorization :

$$
F(0, y)=F_{1}(0, y) \times F_{2}(0, y) \xrightarrow{\text { Hensel }} F(x, y)=\left(y^{3}-4 y-x\right)\left(y^{2}-1-x\right) .
$$

Algorithm and complexity follows

- Recombinations: Reduced echelon basis of the $d \times(d-s)$ matrix A of maximal rank over \mathbb{K}.

Requires $\mathcal{O}\left(d(d-s)^{\omega-1}\right) \subset \mathcal{O}\left(d^{\omega}\right)$ operations.

- Factorization : Hensel lifting with precision $\operatorname{deg}_{x}(F)+1$.

$$
\begin{aligned}
F(0, y) & =F_{1}(0, y) \cdots F_{s}(0, y) \\
\Longrightarrow F(x, y) & =F_{1}(x, y) \cdots F_{s}(x, y)
\end{aligned}
$$

Requires $\widetilde{\mathcal{O}}\left(d^{2}\right) \subset \mathcal{O}\left(d^{\omega}\right)$ operations.

Proof of Theorem 2

One wants to prove the exact sequence

$$
0 \longrightarrow W \longrightarrow \mathbb{K}^{d} \xrightarrow{A} \mathcal{A}^{d-2}(F)^{v} \longrightarrow 0
$$

Disconnect the components

- $\pi: X \rightarrow \mathbb{P}^{2}$ the embeded resolution of singularities of \mathcal{C}
- C and L the strict transforms of \mathcal{C} and $x=0$.

- The irreducible factors of F are now one-to-one with the connected components C_{1}, \ldots, C_{s} of C.

Reformulate the recombination problem

- The C_{i} 's and the p_{j} 's being connected components of C and $C \cap L$ one has:

$$
\begin{aligned}
H^{0}\left(\mathcal{O}_{C}\right) & \simeq H^{0}\left(\mathcal{O}_{C_{1}}\right) \oplus \cdots \oplus H^{0}\left(\mathcal{O}_{C_{s}}\right) \\
H^{0}\left(\mathcal{O}_{C \cap L}\right) & \simeq \mathbb{K}^{s}\left(\mathcal{O}_{\left\{p_{1}\right\}}\right) \oplus \cdots \oplus H^{0}\left(\mathcal{O}_{\left\{p_{n}\right\}}\right)
\end{aligned} \mathbb{K}^{d} \text { W }
$$

- One can identifiy the inclusion $0 \longrightarrow W \longrightarrow \mathbb{K}^{d}$ with the restriction map

$$
0 \longrightarrow H^{0}\left(\mathcal{O}_{C}\right) \xrightarrow{\rho} H^{0}\left(\mathcal{O}_{C \cap L}\right)
$$

- One needs now to compute the cokernel of ρ.

The key result

Proposition 1 One has an exact sequence

$$
0 \rightarrow H^{0}\left(\mathcal{O}_{C}\right) \xrightarrow{\rho} H^{0}\left(\mathcal{O}_{C \cap L}\right) \xrightarrow{R} H^{0}\left(\Omega_{C}(L)\right)^{v} \longrightarrow H^{0}\left(\Omega_{C}\right)^{v} \rightarrow 0
$$

where

$$
R: \quad\left(\lambda_{i}\right)_{i} \longmapsto \quad\left(\Psi \mapsto \sum_{i=1}^{n} \operatorname{res}_{p_{i}}\left(\lambda_{i} \psi\right)\right)
$$

In particular, $\operatorname{dim} H^{0}\left(\Omega_{C}(L)\right)=g+d-s$, with g the genus of \mathcal{C}.

Proof: Uses Koszul resolution, Serre duality and the residue theorem that says that any rational 1 -form ψ on C satisfies

$$
\sum_{p \in C_{j}} \operatorname{res}_{p}(\Psi)=0
$$

Relation with adjoint polynomials (and Theorem 2 follows)

- One has a commutative diagramm with vertical isomorphisms.

$$
\left.\begin{array}{cccccccc}
H^{0}\left(\mathcal{O}_{C}\right) & \hookrightarrow & H^{0}\left(\mathcal{O}_{C \cap L}\right) & \rightarrow & H^{0}\left(\Omega_{C}(L)\right)^{v} & \rightarrow & H^{0}\left(\Omega_{C}\right)^{v} & \rightarrow
\end{array}\right) 00
$$

- The map β is dual of the "multiplication by x " map so that

$$
\operatorname{ker}(\beta)=\mathcal{A}^{d-2}(F)^{v}
$$

- The exact sequence

$$
0 \rightarrow W \longrightarrow \mathbb{K}^{d} \xrightarrow{A} \mathcal{A}^{d-2}(F)^{V} \rightarrow 0
$$

follows, the matrix A being computed from basic residue calculus.

Is $F(0, y)$ non square-free an opportunity?

Just one example...

- Let $F(x, y)=y^{5}-y^{4}-x y^{3}-y^{3}+y^{2}+x^{2}+x y-x$. One has

$$
F(0, y)=(y-1)^{2} y^{2}(y+1)
$$

- The curve \mathcal{C} has only 3 branches intersecting $x=0$ (with 2 tangents) and recombinations only involve 3 unknowns instead of $5=\operatorname{deg}(F)$.
- Let

$$
A:=\left(\operatorname{res}_{\alpha}\left[\frac{H(y) d y}{F(0, y)}\right]\right)_{F(0, \alpha)=0, H \in \mathcal{A}^{d-\mathbf{2}}(F)} .
$$

- One has $W=\operatorname{ker}(A)$, but the residues now depend on higher derivatives :

$$
r e s_{1}\left[\frac{H(y) d y}{(y-1)^{2} y^{2}(y+1)}\right]=\frac{H^{\prime}(1)-H(1)}{4}
$$

- One obtains here $\mathcal{A}^{d-2}(F)=\left\langle y-1, y^{2}, y^{3}\right\rangle$ and $\operatorname{ker}(A)=\langle(1,0,1),(0,1,0)\rangle$.

Conclusion

Factorization $\stackrel{\mathcal{O}\left(\mathrm{d}^{\omega}\right)}{\Longleftrightarrow}$ Adjoints $\bmod (\mathrm{x})$
...So what?

Hensel lifting vs adjoint polynomials

Via Hensel lifting: $\mathcal{O}\left(d^{\omega+1}\right)$ (Lecerf, Belabas-Van Hoeij et al.)

1. Factorization modulo (x).
2. Factorization modulo $\left(x^{2 d}\right)$ via Hensel.
3. Linear system $d \times \mathcal{O}\left(d^{2}\right)$ over \mathbb{K}.
4. Factorization in $\mathbb{K}[x, y]$ via Hensel.

Via adjoint polynomials: $\mathcal{O}\left(d^{\omega}\right)+$ computation of $\mathcal{A}^{d-2}(F)$.

1. Factorization modulo (x).
2. Adjoint polynomials modulo (x).
3. Linear system $d \times(d-s)$ over \mathbb{K}.
4. Factorization in $\mathbb{K}[x, y]$ via Hensel.

Factoring using adjoint polynomials?

Question: Can we compute degree $d-2$ adjoints $\bmod (x)$ faster than the actual $\mathcal{O}\left(d^{\omega+1}\right)$ for factorization?

Answer: Fast computation of all adjoint polynomials is enough since

$$
\text { Adjoints } \stackrel{\mathcal{O}\left(\mathbf{g d}^{\omega-1}\right)}{\Longrightarrow} \text { Adjoints mod }(\mathrm{x})
$$

Not clear... One expects a priori the inclusions

$$
\begin{aligned}
\text { Factorization } & \subset \text { Desingularization (integral closure) } \\
& \subset \text { Adjoints computation (conductor). }
\end{aligned}
$$

(\simeq Newton-Puiseux cost, $\widetilde{\mathcal{O}}\left(d^{5} \log (p)\right)$ for $\mathbb{K}=\mathbb{F}_{p}$, Poteaux-Rybowitch $)$.

Nevertheless...

Philosophy: The complexity of "factoring using adjoints mod (x) " is related to that of "discriminant-integral closure-conductor".
...Is this approach interesting for some particular cases?

- \mathcal{C} transversal union of smooth curves?

- Few intersection points? (extreme $=d$ concurring lines)
- Symetry hypothesis?
- ???

Thank you for your attention

