Toric factorization of polynomials

Martin Weimann

University of Barcelona

Mega 2009

Main Problem : Given $f \in \mathbb{K}[x, y]$ defined over a field of characteristic zero, compute the irreducible factorization of f over a given algebraic extension $\mathbb{K} \subset \mathbb{L}$.

Introduction (II)

A classical approach: The Recombination-Lifting Scheme

1. Generic change of coordinates,
2. Factorize $[f]$ in $\mathbb{L}[x] /\left(x^{k}\right)[y]$ for some $k \geq 0$,
3. Detect and lift the factorizations that can be lifted.

- $k=3 \Rightarrow$ Probabilistic algorithm, exponential complexity, efficient up to degree $d=200$ (Chèze-Galligo-Rupprecht).
- $k=d+1 \Rightarrow$ Deterministic algorithm, $<d^{4}$ operations in \mathbb{L} (Lecerf, using Gao).
- $k=2 d \Rightarrow$ Deterministic algorithm using linear algebra, $<d^{4}$ operations in \mathbb{L} (Chèze-Lecerf, Gao).

Introduction (III)

Objective : Avoid the change of coordinates in order to take advantage of the geometry of the Newton polytope N_{f} of f.
\mathbb{L}-factorization using geometry of N_{f} \Longleftrightarrow

Decomposition of the curve $C \subset X$ of f in the toric compactification X of $\operatorname{Spec} \mathbb{L}\left[x^{ \pm 1}, y^{ \pm 1}\right]$ associated to N_{f}

We will talk about toric factorization algorithms.

Introduction (IV)

Simplification hypothesis : $\{(0,0),(1,0),(0,1)\} \subset N_{f}$.
So X toric completion of $\mathbb{L}^{2}:=\operatorname{Spec} \mathbb{L}[x, y]$. Denote by

$$
\partial X=D_{1}+\cdots+D_{r}
$$

the boundary $X \backslash \mathbb{L}^{2}$. Then $D_{i} \leftrightarrow i^{\text {th }}$ exterior face of N_{f}, and
"Restriction of C to a finite infinitesimal neighborhood of D_{i} "
"Coefficients of f with monomial exponents close to the $i^{\text {th }}$-face".

Example : Suppose $N_{f}=\operatorname{Conv}\{(0,0),(4,0),(0,2),(4,2)\}$. Then $X=\mathbb{P}^{1} \times \mathbb{P}^{1}, \partial X=D_{1}+D_{2}, \operatorname{deg}\left(C \cdot D_{1}\right)=4$ and $\operatorname{deg}\left(C \cdot D_{2}\right)=2$.

Main strategy

These observations motivate the following sketch of algorithm scheme:

1. Consider the curve C of f in the toric completion X.
2. Choose a Cartier divisor $D \geq \partial X$.
3. Compute the restriction $\gamma \in \mathrm{Ca}(D)$ of C to D.
4. Detect and keep the Cartier divisors $0 \leq \gamma^{\prime} \leq \gamma$ that can be lifted to X.
5. Repeat the process with a "bigger" D up to recover the \mathbb{L}-decomposition of C.

- Step 4 ?
- Step 5 ?

Algebraic Osculation

Theorem 1 (-) Let X be a smooth projective completion of \mathbb{L}^{2} with SNC boundary, and let $D \geq \partial X$. There is an explicit residual pairing

$$
\langle\cdot, \cdot\rangle_{D}: \mathrm{Ca}_{\mathbb{L}}(D) \oplus H^{0}\left(X, \Omega_{X}^{2}(D)\right) \rightarrow \mathbb{L}
$$

such that γ lifts to X iff $\langle\gamma, \cdot\rangle_{D} \equiv 0$. The lifting is unique up to rational equivalence.

Sketch of proof

Since $X \backslash|D| \simeq \mathbb{L}^{2}$, we deduce a decomposition

$$
\operatorname{Pic}(D) \simeq \operatorname{Pic}(X) \oplus H^{1}\left(\mathcal{O}_{D}\right)
$$

Serre Vanishing Theorem and X rational $\Rightarrow \gamma$ lifts iff some $\beta=\beta(\gamma)=0$ in $H^{2}\left(\mathcal{O}_{X}(-D)\right)$. Serre duality gives

$$
H^{2}\left(\mathcal{O}_{X}(-D)\right) \otimes H^{0}\left(\Omega_{X}^{2}(D)\right) \xrightarrow{(\cdot \cdot \cdot)} H^{2}\left(\Omega_{X}^{2}\right) \stackrel{T_{r}}{\sim} \mathbb{L}
$$

where Tr is the trace map. Then

$$
\langle\gamma, \Psi\rangle_{D}:=\operatorname{Tr}(\beta, \Psi)
$$

has the desired properties. Dolbeault resolution and residue currents $\Rightarrow \mathbb{L}$-pairing $=$ explicit sum of Grothendieck residues.

An explicit formula

Suppose $D=\sum\left(k_{i}+1\right) D_{i}$ and that $\gamma \in \mathrm{Ca}(D)$ is given by

$$
\left[g_{i}\right] \in \frac{\mathbb{L}\left[x_{i}\right]}{\left(x_{i}^{k_{i}+1}\right)}\left[y_{i}\right], \quad i=1, \ldots, r
$$

If $g_{i}(0) \neq 0$, we have the explicit lifting condition: γ lifts iff

$$
\sum_{i=1}^{r} \operatorname{coeff}_{\left(a_{i m}, b_{i m}\right)} \log _{0}\left(g_{i}\right)=0
$$

for all lattice points m in the interior of the polytope of D, with some explicit $\left(a_{i m}, b_{i m}\right) \in \mathbb{Z}^{2} \backslash\{0\}, 0 \leq a_{i m} \leq k_{i}$.

The Reiss relation

Example : Suppose $X=\mathbb{P}^{2}, D=3 \mathbb{P}^{1}$ and $\gamma=\left\{\prod_{p}\left(y-\phi_{p}\right)=0\right\}$, with $\phi_{p} \in \mathbb{L}[x] /\left(x^{3}\right)$. Then, there is only one lifting conditions, namely

$$
\langle\gamma, \cdot\rangle_{D} \equiv 0 \Longleftrightarrow \sum_{p} \phi_{p}^{\prime \prime}(0)=0
$$

This is the classical Reiss relation, used in the CGR algorithm.

Application to polynomial factorization

We suppose now that

$$
D:=\operatorname{div}_{\infty}(f)+\partial X
$$

and we denote by γ the restriction to D of the curve $C \subset X$ of f.

Theorem 2 (-) Let Q be a Minkowski-summand of N_{f}. There exists q a factor of f with $N_{q}=Q$ if and only if there exists $0 \leq \gamma^{\prime} \leq \gamma$ such that

1. $\left\langle\gamma^{\prime}, \cdot\right\rangle_{D} \equiv 0$
2. $\operatorname{deg}\left(\gamma^{\prime} \cdot D_{i}\right)=\operatorname{Card}\left(Q^{(i)} \cap \mathbb{Z}^{2}\right)-1, \quad i=1, \ldots, r$.

We can compute q from γ^{\prime} by solving an explicit $N \times N$ system of \mathbb{L}-affine equations, with $N=\operatorname{Card}\left(Q \cap \mathbb{N}^{2}\right)-1$.

Sketch of proof

Denote by $i: \rightarrow X$ the inclusion.
\Rightarrow The Cartier divisor $\gamma^{\prime}:=i^{*}\left(\operatorname{div}_{0}(q)\right)$ has the desired properties.
\Leftarrow By Thm 1, $\left\langle\gamma^{\prime}, \cdot\right\rangle_{D} \equiv 0 \Rightarrow \gamma^{\prime}$ lifts to some $C^{\prime} \in \operatorname{Ca}(X)$.
By $(2), H^{1}\left(\mathcal{O}_{X}\left(C^{\prime}-D\right)\right)=0$ and we can choose $C^{\prime} \geq 0$.
If $0 \leq C_{0} \leq C^{\prime}$ is irreducible and not contained in C, then

$$
\begin{aligned}
i^{*}\left(C_{0}\right) \leq i^{*}(C) & \Rightarrow \operatorname{deg}\left(C_{0} \cdot C\right) \geq \operatorname{deg}\left(C_{0} \cdot D\right) \\
& \Rightarrow \operatorname{deg}\left(C_{0} \cdot \partial X\right) \leq 0 \\
& \Rightarrow C_{0}=0
\end{aligned}
$$

So $C^{\prime} \leq C$. This gives a \mathbb{L}-factor q of f, and $N_{q}=Q$ by the degree conditions (2) imposed to γ^{\prime}.
We can compute q from γ^{\prime} since $H^{0}\left(\mathcal{O}_{X}\left(C^{\prime}-D\right)\right)=0$, and residue theory \Rightarrow explicit formula.

A sketch of algorithm

Corollary. The factorization of f can be computed from :

1. The Minkovski-sums decompositions of N_{f}.
2. The factorization of r univariate polynomials

$$
\left[f_{i}\right] \in \frac{\mathbb{L}\left[x_{i}\right]}{\left(x_{i}^{k_{i}+1}\right)}\left[y_{i}\right], \quad \operatorname{deg}\left[f_{i}\right]=l_{i}, \quad i=1, \ldots, r
$$

with r the number of exterior faces of $N_{f}, I_{1}, \ldots, I_{r}$ their lattice lenghts and k_{1}, \ldots, k_{r} their lattice distance to 0 .
3. The lifting-tests for each choice $\gamma^{\prime} \leq \gamma$ induced by 1 and 2 .

The complexity of the algorithm obeys to
$-I_{1}+\ldots+I_{r} \leq \operatorname{deg}(f)$ (with equality $\Leftrightarrow N_{f}$ regular)

- $\sum_{i=1}^{r} k_{i} l_{i}=2 \operatorname{Vol}\left(N_{f}\right)$.
- Lifting-test for a $\gamma^{\prime} \Longleftrightarrow \leq \operatorname{Card}\left(N_{f} \cap \mathbb{N}^{* 2}\right)$ vanishing-sums.

A remark

Morally, Thm $1+$ Thm $2 \Longleftrightarrow$ Toric Hensel lifting. Our algorithm fully takes advantage of the Ostrowski conditions

$$
N_{f_{1} f_{2}}=N_{f_{1}}+N_{f_{2}} .
$$

In particular, f irreducible over $\mathbb{K} \Rightarrow$ irreducible \mathbb{L}-factors have same Newton polytope \Rightarrow reduce (drastically) the number of choices $\gamma^{\prime} \leq \gamma$.

What we gained? A (small) example

Example 1. Suppose $N_{f}=\operatorname{Conv}\{(0,0),(4,0),(0,2),(4,2)\}$ and f irr. over \mathbb{K}. Then

1. Projective approach $\left(f \in \mathcal{O}_{\mathbb{P}^{2}}(6), D=7 \mathbb{P}^{1}\right)$: Factorize

$$
[f] \in \frac{\mathbb{L}[x]}{\left(x^{7}\right)}[y], \quad \operatorname{deg}[f]=6
$$

and test ≤ 21 vanishing-sums for each of the $\leq 20=C_{3}^{6}$ possible recombinations.
2. Toric approach $\left(f \in \mathcal{O}_{\mathbb{P}^{1} \times \mathbb{P}^{\mathbf{1}}}(4,2), D=5 D_{1}+3 D_{2}\right)$: Factorize
$\left[f_{1}\right] \in \frac{\mathbb{L}\left[x_{1}\right]}{\left(x_{1}^{3}\right)}\left[y_{1}\right], \operatorname{deg}\left[f_{1}\right]=4$ and $\left[f_{2}\right] \in \frac{\mathbb{L}\left[x_{2}\right]}{\left(x_{2}^{5}\right)}\left[y_{2}\right], \operatorname{deg}\left[f_{2}\right]=2$,
and test ≤ 8 vanishing-sums for each of the $\leq 12=C_{2}^{4} \times C_{1}^{2}$ possible recombinations.

What we gained? A second (small) example

Example 2. Suppose $N_{f}=\operatorname{Conv}\{(0,0),(6,0),(0,4)\}$. Then

1. Projective approach : Factorize

$$
[f] \in \frac{\mathbb{L}[x]}{\left(x^{7}\right)}[y], \operatorname{deg}[f]=6
$$

and test ≤ 21 vanishing-sums for each of the $\leq C_{3}^{6}=20$ possible recombinations.
2. Toric approach : Factorize

$$
\left[f_{1}\right] \in \frac{\mathbb{L}\left[x_{1}\right]}{\left(x_{1}^{13}\right)}\left[y_{1}\right], \quad \operatorname{deg}\left[f_{1}\right]=2
$$

and test ≤ 19 vanishing-sums for each of the $\leq C_{1}^{2}=2$ possible recombinations.

Using Linear Algebra

Two main problems in Theorem 2.

1. If using numerical calculous, when does a sum vanish?
2. Need to compute Mink. decompositions of N_{f}.
3. Number of recombinations remains "exponential".

Use linear algebra in order to replace:

1. Zero-sums by zero linear combinations
2. Recombinations by computation of a vector space basis.
(permits to use LLL, Chèze, Gao, Lecerf,...).

A toric version of the Chèze-Lecerf algorithm (I)

Hypothesis: The subscheme $\Gamma:=C \cdot \partial X$ is reduced $(\Longleftrightarrow$ exterior facet polynomials of f are square free over \mathbb{L}).

Notations: For any $D \geq \partial X, i: D \rightarrow X$, we let

$$
\gamma=\sum_{p \in|\Gamma|} \gamma_{p}
$$

the irreducible decomposition of $\gamma:=i^{*}(C)$. Then we define the \mathbb{L}-vector space

$$
L_{C}(D):=\left\{\mu \in \mathbb{L}^{|\Gamma|},\left\langle\gamma_{\mu}, \cdot\right\rangle_{D} \equiv 0\right\}
$$

where $\mu=\left(\mu_{p}\right)_{p \in|\Gamma|}, \gamma_{\mu}:=\sum \mu_{p} \gamma_{p}$.

A toric version of the Chèze-Lecerf algorithm (II)

Theorem 3 (-) Let $C=C_{1}+\cdots+C_{s}$ be the irreducible decomposition of C (over \mathbb{L}). Then $\operatorname{dim} L_{C}(D) \geq s$, and

$$
D \geq 2 \operatorname{div}_{\infty}(f) \Longrightarrow \operatorname{dim} L_{C}(D)=s
$$

In that case, $i^{*}\left(C_{j}\right)=\gamma_{\mu_{j}}$ where $\left(\mu_{1}, \ldots, \mu_{s}\right)$ is the reduced echelon basis of $L_{C}(D)$.

Sketch of proof

- Easy : $\left\langle\mu_{1}, \ldots, \mu_{s}\right\rangle \subset L_{C}(D), \operatorname{dim} s$ for all D.
- Suppose now $D=2 \operatorname{div}_{\infty}(f)$ and let $\mu \in L_{C}(D)$. Then,

1. γ_{μ} lifts and there exists $\omega \in H^{0}\left(\Omega_{X}^{1}\left(\log \left(-K_{X}\right)\right) \otimes \mathcal{O}_{X}(C)\right)$,

- $i^{*}(\omega)_{p}=\mu_{p} i^{*}(d f / f)_{p} \forall p \in|\Gamma| ;$
- $i^{*}(d \omega)=0 \in H^{0}\left(\Omega_{X}^{2}\left(2 C-K_{X}\right) \otimes \mathcal{O}_{D}\right)$.

2. Using $D \simeq 2 C$, we obtain

$$
d \omega \in H^{0}\left(\Omega_{X}^{2}(2 C-D)\right) \Rightarrow \omega=\frac{c}{f^{2}} \frac{d x \wedge d y}{x y} \Rightarrow d \omega=0
$$

3. By a (variant of) a theorem of Ruppert, we deduce that

$$
\omega=\sum_{j=1}^{s} c_{j} d f_{j} / f_{j}+a_{1} d x / x+a_{2} d y / y, \quad c_{j} \in \mathbb{L}
$$

4. We deduce that $\mu=c_{1} \mu_{1}+\cdots+c_{s} \mu_{s}$.

Further comments

1. By Theorem 2, we can compute the reduced echelon basis of $L_{C}(D)$ (so the factorizaton of f) without using a precision greater than $\operatorname{div}_{\infty}(f)$.
2. Theorem 1 is valid in a non toric completion of $\operatorname{Spec} \mathbb{L}[x, y]$ \Longrightarrow One might improve the algorithms when C has (non toric) singularities along the boundary ∂X !
3. Better choices of D ?
4. Char $\mathbb{K} \neq 0$?

Thank you!

(Especially for those who missed their plane to follow my talk)

