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Introduction (1)

Main Problem : Given f € K[x, y] defined over a field of
characteristic zero, compute the irreducible factorization of f over a
given algebraic extension K C L.



Introduction (I1)
A classical approach : The Recombination-Lifting Scheme

1. Generic change of coordinates,
2. Factorize [f] in L[x]/(x*)[y] for some k >0,
3. Detect and lift the factorizations that can be lifted.

e k = 3 = Probabilistic algorithm, exponential complexity, efficient
up to degree d = 200 (Chéze-Galligo-Rupprecht).

e k =d + 1 = Deterministic algorithm, < d* operations in L
(Lecerf, using Gao).

e k = 2d = Deterministic algorithm using linear algebra, < d*
operations in L (Chéze-Lecerf, Gao).



Introduction (I11)

Objective : Avoid the change of coordinates in order to take
advantage of the geometry of the Newton polytope Ny of f.

L-factorization using geometry of Ny

—

Decomposition of the curve C C X of f in the toric
compactification X of Spec L[x*!, y*!] associated to N¢

We will talk about toric factorization algorithms.



Introduction (1V)
Simplification hypothesis : {(0,0),(1,0),(0,1)} C N¢.
So X toric completion of L2 := SpeclL[x, y]. Denote by
X =Dy +---+ D,

the boundary X\ 2. Then D; « ith exterior face of Ny, and

“Restriction of C to a finite infinitesimal neighborhood of D;”

—

“Coefficients of f with monomial exponents close to the it"-face”.

Example : Suppose N = Conv{(0,0), (4,0),(0,2),(4,2)}. Then
X =P x P!, OX = Dy + Dy, deg(C - D1) = 4 and deg(C - D;) = 2.



Main strategy

These observations motivate the following sketch of algorithm
scheme :

Consider the curve C of f in the toric completion X.
Choose a Cartier divisor D > 0X.
Compute the restriction v € Ca(D) of C to D.

e

Detect and keep the Cartier divisors 0 < 4/ < ~ that can be
lifted to X.

5. Repeat the process with a “bigger” D up to recover the
L-decomposition of C.

e Step 47
e Step 57



Algebraic Osculation

Theorem 1 (-) Let X be a smooth projective completion of IL> with
SNC boundary, and let D > 0X. There is an explicit residual pairing

(-, )p: Car(D) @ H°(X,Q%(D)) — L

such that ~y lifts to X iff (v, -)p = 0. The lifting is unique up to
rational equivalence.



Sketch of proof

Since X \ |D| ~ L2, we deduce a decomposition
Pic(D) ~ Pic(X) ® H(Op).

Serre Vanishing Theorem and X rational = - lifts iff some
B = B(y) =0 in H>(Ox(—D)). Serre duality gives

H(Ox(~D)) & H(@%(D)) % H(2%) £ 1.,
where Tr is the trace map. Then

<’Y» W>D = Tl’(ﬁ, W)

has the desired properties. Dolbeault resolution and residue currents
= LL-pairing = explicit sum of Grothendieck residues. O



An explicit formula

Suppose D = > (ki + 1)D; and that v € Ca(D) is given by

L[x; .
(k[+1)[] i=1,..

1

[&i] €

.
If gi(0) # 0, we have the explicit lifting condition : ~ lifts iff

ZcoefF(a;m,b;m) logo(gi) = 0

i=1

for all lattice points m in the interior of the polytope of D, with
some explicit (ajm, bim) € Z2 \ {0}, 0 < ajm < k;.



The Reiss relation

Example : Suppose X = P2, D = 3P! and v = {I1,(y — ¢p) =0},
with ¢, € L[x]/(x3). Then, there is only one lifting conditions,
namely

(7, )p=0 < Y ¢,(0)=0.
p

This is the classical Reiss relation, used in the CGR algorithm.



Application to polynomial factorization

We suppose now that
D :=divoo(f) + 0X.

and we denote by v the restriction to D of the curve C C X of f.

Theorem 2 (-) Let Q be a Minkowski-summand of N¢. There exists
q a factor of f with Ny, = Q if and only if there exists 0 < <y
such that

L <7/7'>D =
2. deg(y - D;) = Card(Q) N7 -1, i=1,...,r.

We can compute q from ~' by solving an explicit N x N system of
LL-affine equations, with N = Card(@ N N?) — 1.



Sketch of proof

Denote by i :— X the inclusion.
= The Cartier divisor 7' := i*(divg(q)) has the desired properties.

< By Thm 1, (v/,-)p = 0 = +/ lifts to some C’ € Ca(X).
By (2), HY(Ox(C' — D)) = 0 and we can choose C' > 0.

If 0 < Gy < C'is irreducible and not contained in C, then

i"(G) <i*(C) = deg(Co- C) >deg(Co- D)
= deg((p-0X) <0
= (G =0.

So €' < C. This gives a L-factor g of f, and Ny = Q by the degree
conditions (2) imposed to 7

We can compute g from v’ since HY(Ox(C’' — D)) = 0, and
residue theory = explicit formula. O



A sketch of algorithm

Corollary. The factorization of f can be computed from :
1. The Minkovski-sums decompositions of Ny.

2. The factorization of r univariate polynomials

L[x; .
[fi] € k[+1 lvil, deglfil =1, i=1,....r
(")
with r the number of exterior faces of N¢, I, ... I, their
lattice lenghts and ki, ..., k. their lattice distance to 0.

3. The lifting-tests for each choice v < v induced by 1 and 2.

The complexity of the algorithm obeys to
> h+ ...+ I, <deg(f) (with equality < Ny regular)
> > iy kili = 2Vol(Ny).
> Lifting-test for a v/ <= < Card(Ns N N*2) vanishing-sums.



A remark

Morally, Thm 1 + Thm 2 <= Toric Hensel lifting. Our algorithm
fully takes advantage of the Ostrowski conditions

Nflfz = Nfl + Nfz.

In particular, f irreducible over K = irreducible LL-factors have
same Newton polytope = reduce (drastically) the number of
choices 7/ < 7.



What we gained 7 A (small) example
Example 1. Suppose Nf = Conv{(0,0), (4,0),(0,2),(4,2)} and f
irr. over K. Then
1. Projective approach (f € Op2(6), D = 7P!) : Factorize
Lk
(x7)

and test < 21 vanishing-sums for each of the < 20 = C?
possible recombinations.

2. Toric approach (f € Op1p1(4,2), D = 5D;1 + 3D5) : Factorize

[l € ([ 1)] [y1], deg[fi] =4 and [f] € I%[ 2‘)]

and test < 8 vanishing-sums for each of the < 12 = C3 x C?
possible recombinations.

[fle =], deglf]=6

[y2], deg[fa] =2,



What we gained ? A second (small) example

Example 2. Suppose N¢ = Conv{(0,0), (6,0),(0,4)}. Then

1. Projective approach : Factorize

< o Lx }[yl deglf] = 6

and test < 21 vanishing-sums for each of the < C36 =20
possible recombinations.

2. Toric approach : Factorize

e ¢ Ll i[yl] deglf] = 2

and test < 19 vanishing-sums for each of the < C12 =2
possible recombinations.



Using Linear Algebra

Two main problems in Theorem 2.
1. If using numerical calculous, when does a sum vanish ?
2. Need to compute Mink. decompositions of N.

3. Number of recombinations remains “exponential”.

Use linear algebra in order to replace :
1. Zero-sums by zero linear combinations
2. Recombinations by computation of a vector space basis.

(permits to use LLL, Chéze, Gao, Lecerf,...).



A toric version of the Chéze-Lecerf algorithm (1)

Hypothesis : The subscheme ' := C - 90X is reduced ( <= exterior
facet polynomials of f are square free over LL ).

Notations : For any D > 090X, i: D — X, we let

Y= %

pe|r]

the irreducible decomposition of v := i*(C). Then we define the
IL-vector space

Le(D) = {ue LN, (y,, )p =0},

where p = (MP)pE|I’|1 V= 2 Hpp-



A toric version of the Chéze-Lecerf algorithm (II)

Theorem 3 (-) Let C = Gy + --- + Cs be the irreducible
decomposition of C (over L). Then dim Lc(D) > s, and

D > 2diveo(f) = dimL¢(D) = s.

In that case, i*(C;) = v, where (u1,. .., us) is the reduced
echelon basis of Lc(D).



Sketch of proof

e Easy : (u1,...,us) C Le(D), dims for all D.
e Suppose now D = 2div(f) and let € Lc(D). Then,

1.

7, lifts and there exists w € H%(Q} (log(—KXx)) ® Ox(C)),

o i"(w)p = ppi*(df/f)p Y pe|ll;
o i*(dw) =0 € HY(Q%(2C — Kx) ® Op).
Using D ~ 2C, we obtain

dw € Q2 (2C — D)) = w = S N DY

TR = dw = 0.

By a (variant of) a theorem of Ruppert, we deduce that

S
w= Z cjdf;/f; + ardx/x + axdy/y, ¢ € L.
=1

We deduce that = i1 + -+ - + Cspts-



Further comments

1. By Theorem 2, we can compute the reduced echelon basis of
Lc(D) (so the factorizaton of f) without using a precision
greater than divy(f).

2. Theorem 1 is valid in a non toric completion of SpecL[x, y]
= One might improve the algorithms when C has (non toric)
singularities along the boundary 9X'!

3. Better choices of D?

4. CharK#07



Thank you!

(Especially for those who missed their plane to follow my talk)



