Toric factorization of polynomials

Martin Weimann

University of Barcelona

Mega 2009

▲□▶ ▲圖▶ ▲臣▶ ★臣▶ ―臣 …の�?

Introduction (I)

Main Problem : Given $f \in \mathbb{K}[x, y]$ defined over a field of characteristic zero, compute the irreducible factorization of f over a given algebraic extension $\mathbb{K} \subset \mathbb{L}$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Introduction (II)

A classical approach : The Recombination-Lifting Scheme

- 1. Generic change of coordinates,
- 2. Factorize [f] in $\mathbb{L}[x]/(x^k)[y]$ for some $k \ge 0$,
- 3. Detect and lift the factorizations that can be lifted.

• $k = 3 \Rightarrow$ Probabilistic algorithm, exponential complexity, efficient up to degree d = 200 (Chèze-Galligo-Rupprecht).

• $k = d + 1 \Rightarrow$ Deterministic algorithm, $< d^4$ operations in \mathbb{L} (Lecerf, using Gao).

• $k = 2d \Rightarrow$ Deterministic algorithm using linear algebra, $< d^4$ operations in \mathbb{L} (Chèze-Lecerf, Gao).

Introduction (III)

Objective : Avoid the change of coordinates in order to take advantage of the geometry of the Newton polytope N_f of f.

 \mathbb{L} -factorization using geometry of N_f

 \Leftrightarrow

Decomposition of the curve $C \subset X$ of f in the toric compactification X of Spec $\mathbb{L}[x^{\pm 1}, y^{\pm 1}]$ associated to N_f

・ロト ・ 日 ・ エ = ・ ・ 日 ・ うへつ

We will talk about toric factorization algorithms.

Introduction (IV)

Simplification hypothesis : $\{(0,0), (1,0), (0,1)\} \subset N_f$.

So X toric completion of $\mathbb{L}^2 := \operatorname{Spec} \mathbb{L}[x, y]$. Denote by

$$\partial X = D_1 + \cdots + D_r$$

the boundary $X \setminus \mathbb{L}^2$. Then $D_i \leftrightarrow i^{th}$ exterior face of N_f , and

"Restriction of C to a finite infinitesimal neighborhood of D_i "

"Coefficients of f with monomial exponents close to the i^{th} -face".

 \Leftrightarrow

Example : Suppose $N_f = \text{Conv}\{(0,0), (4,0), (0,2), (4,2)\}$. Then $X = \mathbb{P}^1 \times \mathbb{P}^1, \ \partial X = D_1 + D_2, \ \deg(C \cdot D_1) = 4 \ \text{and} \ \deg(C \cdot D_2) = 2.$

Main strategy

These observations motivate the following sketch of algorithm scheme :

- 1. Consider the curve C of f in the toric completion X.
- 2. Choose a Cartier divisor $D \ge \partial X$.
- 3. Compute the restriction $\gamma \in Ca(D)$ of C to D.
- 4. Detect and keep the Cartier divisors 0 $\leq \gamma' \leq \gamma$ that can be lifted to X.

・ロト ・ 日 ・ エ = ・ ・ 日 ・ うへつ

- 5. Repeat the process with a "bigger" D up to recover the \mathbb{L} -decomposition of C.
- Step 4?
- Step 5?

Theorem 1 (-) Let X be a smooth projective completion of \mathbb{L}^2 with SNC boundary, and let $D \ge \partial X$. There is an explicit residual pairing

$$\langle \cdot, \cdot \rangle_D : \mathsf{Ca}_{\mathbb{L}}(D) \oplus H^0(X, \Omega^2_X(D)) \to \mathbb{L}$$

such that γ lifts to X iff $\langle \gamma, \cdot \rangle_D \equiv 0$. The lifting is unique up to rational equivalence.

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ・ うへつ

Sketch of proof

Since $X \setminus |D| \simeq \mathbb{L}^2$, we deduce a decomposition $\operatorname{Pic}(D) \simeq \operatorname{Pic}(X) \oplus H^1(\mathcal{O}_D).$

Serre Vanishing Theorem and X rational $\Rightarrow \gamma$ lifts iff some $\beta = \beta(\gamma) = 0$ in $H^2(\mathcal{O}_X(-D))$. Serre duality gives

$$H^2(\mathcal{O}_X(-D))\otimes H^0(\Omega^2_X(D))\stackrel{(\cdot,\cdot)}{\longrightarrow} H^2(\Omega^2_X)\stackrel{T_r}{\simeq}\mathbb{L},$$

where Tr is the trace map. Then

$$\langle \gamma, \Psi \rangle_D := Tr(\beta, \Psi)$$

has the desired properties. Dolbeault resolution and residue currents $\Rightarrow \mathbb{L}$ -pairing = explicit sum of Grothendieck residues.

ション ふゆ く 山 マ チャット しょうくしゃ

An explicit formula

Suppose $D = \sum (k_i + 1)D_i$ and that $\gamma \in \mathsf{Ca}(D)$ is given by

$$[g_i] \in \frac{\mathbb{L}[x_i]}{(x_i^{k_i+1})}[y_i], \quad i=1,\ldots,r.$$

If $g_i(0) \neq 0$, we have the explicit lifting condition : γ lifts iff

$$\sum_{i=1}^{r} \operatorname{coeff}_{(a_{im},b_{im})} \log_0(g_i) = 0$$

・ロト ・ 日 ・ エ = ・ ・ 日 ・ うへつ

for all lattice points *m* in the interior of the polytope of *D*, with some explicit $(a_{im}, b_{im}) \in \mathbb{Z}^2 \setminus \{0\}, \ 0 \le a_{im} \le k_i$.

The Reiss relation

Example : Suppose $X = \mathbb{P}^2$, $D = 3\mathbb{P}^1$ and $\gamma = \{\prod_p (y - \phi_p) = 0\}$, with $\phi_p \in \mathbb{L}[x]/(x^3)$. Then, there is only one lifting conditions, namely

$$\langle \gamma, \cdot \rangle_D \equiv 0 \iff \sum_p \phi_p''(0) = 0.$$

・ロト ・ 日 ・ エ = ・ ・ 日 ・ うへつ

This is the classical Reiss relation, used in the CGR algorithm.

Application to polynomial factorization

We suppose now that

$$D:=\operatorname{div}_{\infty}(f)+\partial X.$$

and we denote by γ the restriction to D of the curve $C \subset X$ of f.

Theorem 2 (-) Let Q be a Minkowski-summand of N_f . There exists q a factor of f with $N_q = Q$ if and only if there exists $0 \le \gamma' \le \gamma$ such that

- 1. $\langle \gamma', \cdot \rangle_D \equiv 0$
- 2. $\deg(\gamma' \cdot D_i) = \operatorname{Card}(Q^{(i)} \cap \mathbb{Z}^2) 1, i = 1, \dots, r.$

We can compute q from γ' by solving an explicit $N \times N$ system of \mathbb{L} -affine equations, with $N = \text{Card}(Q \cap \mathbb{N}^2) - 1$.

Sketch of proof

Denote by $i :\rightarrow X$ the inclusion.

 \Rightarrow The Cartier divisor $\gamma' := i^*(\operatorname{div}_0(q))$ has the desired properties.

 $\Leftarrow \text{ By Thm 1, } \langle \gamma', \cdot \rangle_D \equiv 0 \Rightarrow \gamma' \text{ lifts to some } C' \in \text{Ca}(X). \\ \text{By (2), } H^1(\mathcal{O}_X(C' - D)) = 0 \text{ and we can choose } C' \geq 0. \\ \end{cases}$

If $0 \leq C_0 \leq C'$ is irreducible and not contained in C, then

$$egin{aligned} &i^*(\mathcal{C}_0) \leq i^*(\mathcal{C}) &\Rightarrow & \mathsf{deg}(\mathcal{C}_0 \cdot \mathcal{C}) \geq \mathsf{deg}(\mathcal{C}_0 \cdot \mathcal{D}) \ &\Rightarrow & \mathsf{deg}(\mathcal{C}_0 \cdot \partial X) \leq 0 \ &\Rightarrow & \mathcal{C}_0 = 0. \end{aligned}$$

So $C' \leq C$. This gives a L-factor q of f, and $N_q = Q$ by the degree conditions (2) imposed to γ' . We can compute q from γ' since $H^0(\mathcal{O}_X(C' - D)) = 0$, and residue theory \Rightarrow explicit formula.

A sketch of algorithm

Corollary. The factorization of f can be computed from :

- 1. The Minkovski-sums decompositions of N_f.
- 2. The factorization of r univariate polynomials

$$[f_i] \in \frac{\mathbb{L}[x_i]}{(x_i^{k_i+1})}[y_i], \ \deg[f_i] = I_i, \quad i = 1, \dots, r$$

with r the number of exterior faces of N_f , l_1, \ldots, l_r their lattice lenghts and k_1, \ldots, k_r their lattice distance to 0.

3. The lifting-tests for each choice $\gamma' \leq \gamma$ induced by 1 and 2.

The complexity of the algorithm obeys to

•
$$l_1 + \ldots + l_r \leq \deg(f)$$
 (with equality $\Leftrightarrow N_f$ regular)

$$\sum_{i=1}^r k_i l_i = 2 \operatorname{Vol}(N_f).$$

• Lifting-test for a $\gamma' \iff \leq Card(N_f \cap \mathbb{N}^{*2})$ vanishing-sums.

A remark

Morally, Thm 1 + Thm 2 \iff Toric Hensel lifting. Our algorithm fully takes advantage of the Ostrowski conditions

$$N_{f_1f_2} = N_{f_1} + N_{f_2}.$$

・ロト ・ 日 ・ エ = ・ ・ 日 ・ うへつ

In particular, f irreducible over $\mathbb{K} \Rightarrow$ irreducible \mathbb{L} -factors have same Newton polytope \Rightarrow reduce (drastically) the number of choices $\gamma' \leq \gamma$.

What we gained? A (small) example

Example 1. Suppose $N_f = \text{Conv}\{(0,0), (4,0), (0,2), (4,2)\}$ and f irr. over K. Then

1. Projective approach ($f \in \mathcal{O}_{\mathbb{P}^2}(6)$, $D = 7\mathbb{P}^1$) : Factorize

$$[f] \in \frac{\mathbb{L}[x]}{(x^7)}[y], \ \deg[f] = 6$$

and test ≤ 21 vanishing-sums for each of the $\leq 20 = C_3^6$ possible recombinations.

2. Toric approach ($f \in \mathcal{O}_{\mathbb{P}^1 imes \mathbb{P}^1}(4,2)$, $D = 5D_1 + 3D_2$) : Factorize

$$[f_1] \in \frac{\mathbb{L}[x_1]}{(x_1^3)}[y_1], \, \deg[f_1] = 4 \, \text{ and } \, [f_2] \in \frac{\mathbb{L}[x_2]}{(x_2^5)}[y_2], \, \deg[f_2] = 2,$$

and test \leq 8 vanishing-sums for each of the \leq 12 = $C_2^4 \times C_1^2$ possible recombinations.

What we gained? A second (small) example

Example 2. Suppose $N_f = \text{Conv}\{(0,0), (6,0), (0,4)\}$. Then

1. Projective approach : Factorize

$$[f] \in \frac{\mathbb{L}[x]}{(x^7)}[y], \ \mathsf{deg}[f] = 6$$

and test ≤ 21 vanishing-sums for each of the $\leq C_3^6 = 20$ possible recombinations.

2. Toric approach : Factorize

$$[f_1] \in \frac{\mathbb{L}[x_1]}{(x_1^{13})}[y_1], \ \deg[f_1] = 2$$

and test \leq 19 vanishing-sums for each of the $\leq C_1^2 = 2$ possible recombinations.

Using Linear Algebra

Two main problems in Theorem 2.

- 1. If using numerical calculous, when does a sum vanish?
- 2. Need to compute Mink. decompositions of N_f .
- 3. Number of recombinations remains "exponential".

Use linear algebra in order to replace :

1. Zero-sums by zero linear combinations

2. Recombinations by computation of a vector space basis. (permits to use LLL, Chèze, Gao, Lecerf,...).

ション ふゆ く 山 マ チャット しょうくしゃ

A toric version of the Chèze-Lecerf algorithm (I)

Hypothesis : The subscheme $\Gamma := C \cdot \partial X$ is reduced (\iff exterior facet polynomials of f are square free over \mathbb{L}).

Notations : For any $D \ge \partial X$, $i : D \to X$, we let

$$\gamma = \sum_{\boldsymbol{p} \in |\Gamma|} \gamma_{\boldsymbol{p}}$$

the irreducible decomposition of $\gamma := i^*(\mathcal{C})$. Then we define the \mathbb{L} -vector space

$$L_{\mathcal{C}}(D) := \{ \mu \in \mathbb{L}^{|\Gamma|}, \ \langle \gamma_{\mu}, \cdot \rangle_{D} \equiv 0 \},\$$

・ロト ・ 日 ・ エ = ・ ・ 日 ・ うへつ

where $\mu = (\mu_p)_{p \in |\Gamma|}, \ \gamma_\mu := \sum \mu_p \gamma_p$.

A toric version of the Chèze-Lecerf algorithm (II)

Theorem 3 (-) Let $C = C_1 + \cdots + C_s$ be the irreducible decomposition of C (over \mathbb{L}). Then dim $L_C(D) \ge s$, and

$$D \geq 2 \operatorname{div}_{\infty}(f) \Longrightarrow \operatorname{dim} L_{\mathcal{C}}(D) = s.$$

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ・ うへつ

In that case, $i^*(C_j) = \gamma_{\mu_j}$ where (μ_1, \ldots, μ_s) is the reduced echelon basis of $L_C(D)$.

Sketch of proof

- Easy : $\langle \mu_1, \ldots, \mu_s \rangle \subset L_C(D)$, dim *s* for all *D*.
- Suppose now $D=2\operatorname{div}_\infty(f)$ and let $\mu\in L_{\mathcal{C}}(D).$ Then,
 - 1. γ_{μ} lifts and there exists $\omega \in H^0(\Omega^1_X(\log(-K_X)) \otimes \mathcal{O}_X(\mathcal{C}))$,

•
$$i^*(\omega)_p = \mu_p i^* (df/f)_p \quad \forall p \in |\Gamma|;$$

• $i^*(d\omega) = 0 \in H^0(\Omega^2_X(2C - K_X) \otimes \mathcal{O}_D).$

2. Using $D \simeq 2C$, we obtain

$$d\omega \in H^0(\Omega^2_X(2\mathcal{C}-D)) \Rightarrow \omega = rac{c}{f^2}rac{dx \wedge dy}{xy} \Rightarrow d\omega = 0.$$

3. By a (variant of) a theorem of Ruppert, we deduce that

$$\omega = \sum_{j=1}^{s} c_j df_j / f_j + a_1 dx / x + a_2 dy / y, \ c_j \in \mathbb{L}.$$

・ロト ・ 日 ・ エ = ・ ・ 日 ・ うへつ

4. We deduce that $\mu=c_1\mu_1+\cdots+c_s\mu_s$.

Further comments

- 1. By Theorem 2, we can compute the reduced echelon basis of $L_C(D)$ (so the factorizaton of f) without using a precision greater than $div_{\infty}(f)$.
- 2. Theorem 1 is valid in a non toric completion of Spec $\mathbb{L}[x, y]$ \implies One might improve the algorithms when C has (non toric) singularities along the boundary ∂X !

(日) (周) (日) (日) (日) (0) (0)

- 3. Better choices of *D*?
- 4. Char $\mathbb{K} \neq 0$?

Thank you!

(Especially for those who missed their plane to follow my talk)