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Introduction (I)

Main Problem : Given f ∈ K[x , y ] de�ned over a �eld of

characteristic zero, compute the irreducible factorization of f over a

given algebraic extension K ⊂ L.



Introduction (II)

A classical approach : The Recombination-Lifting Scheme

1. Generic change of coordinates,

2. Factorize [f ] in L[x ]/(xk)[y ] for some k ≥ 0,

3. Detect and lift the factorizations that can be lifted.

• k = 3 ⇒ Probabilistic algorithm, exponential complexity, e�cient

up to degree d = 200 (Chèze-Galligo-Rupprecht).

• k = d + 1 ⇒ Deterministic algorithm, < d4 operations in L
(Lecerf, using Gao).

• k = 2d ⇒ Deterministic algorithm using linear algebra, < d4

operations in L (Chèze-Lecerf, Gao).



Introduction (III)

Objective : Avoid the change of coordinates in order to take

advantage of the geometry of the Newton polytope Nf of f .

L-factorization using geometry of Nf

⇐⇒

Decomposition of the curve C ⊂ X of f in the toric

compacti�cation X of SpecL[x±1, y±1] associated to Nf

We will talk about toric factorization algorithms.



Introduction (IV)

Simpli�cation hypothesis : {(0, 0), (1, 0), (0, 1)} ⊂ Nf .

So X toric completion of L2 := SpecL[x , y ]. Denote by

∂X = D1 + · · ·+ Dr

the boundary X \ L2. Then Di ↔ i th exterior face of Nf , and

�Restriction of C to a �nite in�nitesimal neighborhood of Di �

⇐⇒

�Coe�cients of f with monomial exponents close to the i th-face�.

Example : Suppose Nf = Conv{(0, 0), (4, 0), (0, 2), (4, 2)}. Then
X = P1×P1, ∂X = D1 +D2, deg(C ·D1) = 4 and deg(C ·D2) = 2.



Main strategy

These observations motivate the following sketch of algorithm

scheme :

1. Consider the curve C of f in the toric completion X .

2. Choose a Cartier divisor D ≥ ∂X .

3. Compute the restriction γ ∈ Ca(D) of C to D.

4. Detect and keep the Cartier divisors 0 ≤ γ′ ≤ γ that can be

lifted to X .

5. Repeat the process with a �bigger� D up to recover the

L-decomposition of C .

• Step 4 ?

• Step 5 ?



Algebraic Osculation

Theorem 1 (-) Let X be a smooth projective completion of L2 with

SNC boundary, and let D ≥ ∂X. There is an explicit residual pairing

〈 · , · 〉D : CaL(D)⊕ H0(X ,Ω2

X (D))→ L

such that γ lifts to X i� 〈 γ , · 〉D ≡ 0. The lifting is unique up to

rational equivalence.



Sketch of proof

Since X \ |D| ' L2, we deduce a decomposition

Pic(D) ' Pic(X )⊕ H1(OD).

Serre Vanishing Theorem and X rational ⇒ γ lifts i� some

β = β(γ) = 0 in H2(OX (−D)). Serre duality gives

H2(OX (−D))⊗ H0(Ω2

X (D))
(·,·)−→ H2(Ω2

X )
Tr' L,

where Tr is the trace map. Then

〈γ,Ψ〉D := Tr(β,Ψ)

has the desired properties. Dolbeault resolution and residue currents

⇒ L-pairing = explicit sum of Grothendieck residues. �



An explicit formula

Suppose D =
∑

(ki + 1)Di and that γ ∈ Ca(D) is given by

[gi ] ∈
L[xi ]

(xki+1

i )
[yi ], i = 1, . . . , r .

If gi (0) 6= 0, we have the explicit lifting condition : γ lifts i�

r∑
i=1

coe�(aim,bim) log0(gi ) = 0

for all lattice points m in the interior of the polytope of D, with

some explicit (aim, bim) ∈ Z2 \ {0}, 0 ≤ aim ≤ ki .



The Reiss relation

Example : Suppose X = P2, D = 3P1 and γ = {
∏

p(y − φp) = 0},
with φp ∈ L[x ]/(x3). Then, there is only one lifting conditions,

namely

〈 γ , · 〉D ≡ 0 ⇐⇒
∑
p

φ
′′
p(0) = 0.

This is the classical Reiss relation, used in the CGR algorithm.



Application to polynomial factorization

We suppose now that

D := div∞(f ) + ∂X .

and we denote by γ the restriction to D of the curve C ⊂ X of f .

Theorem 2 (-) Let Q be a Minkowski-summand of Nf . There exists

q a factor of f with Nq = Q if and only if there exists 0 ≤ γ′ ≤ γ
such that

1. 〈γ′, ·〉D ≡ 0

2. deg(γ′ · Di ) = Card(Q(i) ∩ Z2)− 1, i = 1, . . . , r .

We can compute q from γ′ by solving an explicit N × N system of

L-a�ne equations, with N = Card(Q ∩ N2)− 1.



Sketch of proof

Denote by i :→ X the inclusion.

⇒ The Cartier divisor γ′ := i∗(div0(q)) has the desired properties.

⇐ By Thm 1, 〈γ′, ·〉D ≡ 0⇒ γ′ lifts to some C ′ ∈ Ca(X ).
By (2), H1(OX (C ′ − D)) = 0 and we can choose C ′ ≥ 0.

If 0 ≤ C0 ≤ C ′ is irreducible and not contained in C , then

i∗(C0) ≤ i∗(C ) ⇒ deg(C0 · C ) ≥ deg(C0 · D)

⇒ deg(C0 · ∂X ) ≤ 0

⇒ C0 = 0.

So C ′ ≤ C . This gives a L-factor q of f , and Nq = Q by the degree

conditions (2) imposed to γ′.
We can compute q from γ′ since H0(OX (C ′ − D)) = 0, and

residue theory ⇒ explicit formula. �



A sketch of algorithm

Corollary. The factorization of f can be computed from :

1. The Minkovski-sums decompositions of Nf .

2. The factorization of r univariate polynomials

[fi ] ∈
L[xi ]

(xki+1

i )
[yi ], deg[fi ] = li , i = 1, . . . , r

with r the number of exterior faces of Nf , l1, . . . , lr their
lattice lenghts and k1, . . . , kr their lattice distance to 0.

3. The lifting-tests for each choice γ′ ≤ γ induced by 1 and 2.

The complexity of the algorithm obeys to

I l1 + . . .+ lr ≤ deg(f ) (with equality ⇔ Nf regular)

I
∑r

i=1
ki li = 2Vol(Nf ).

I Lifting-test for a γ′ ⇐⇒ ≤ Card(Nf ∩ N∗2) vanishing-sums.



A remark

Morally, Thm 1 + Thm 2 ⇐⇒ Toric Hensel lifting. Our algorithm

fully takes advantage of the Ostrowski conditions

Nf1f2 = Nf1 + Nf2 .

In particular, f irreducible over K ⇒ irreducible L-factors have
same Newton polytope ⇒ reduce (drastically) the number of

choices γ′ ≤ γ.



What we gained ? A (small) example

Example 1. Suppose Nf = Conv{(0, 0), (4, 0), (0, 2), (4, 2)} and f

irr. over K. Then

1. Projective approach (f ∈ OP2(6), D = 7P1) : Factorize

[f ] ∈ L[x ]

(x7)
[y ], deg[f ] = 6

and test ≤ 21 vanishing-sums for each of the ≤ 20 = C 6

3

possible recombinations.

2. Toric approach (f ∈ OP1×P1(4, 2), D = 5D1 + 3D2) : Factorize

[f1] ∈ L[x1]

(x3
1

)
[y1], deg[f1] = 4 and [f2] ∈ L[x2]

(x5
2

)
[y2], deg[f2] = 2,

and test ≤ 8 vanishing-sums for each of the ≤ 12 = C 4

2
× C 2

1

possible recombinations.



What we gained ? A second (small) example

Example 2. Suppose Nf = Conv{(0, 0), (6, 0), (0, 4)}. Then

1. Projective approach : Factorize

[f ] ∈ L[x ]

(x7)
[y ], deg[f ] = 6

and test ≤ 21 vanishing-sums for each of the ≤ C 6

3
= 20

possible recombinations.

2. Toric approach : Factorize

[f1] ∈ L[x1]

(x13
1

)
[y1], deg[f1] = 2

and test ≤ 19 vanishing-sums for each of the ≤ C 2

1
= 2

possible recombinations.



Using Linear Algebra

Two main problems in Theorem 2.

1. If using numerical calculous, when does a sum vanish ?

2. Need to compute Mink. decompositions of Nf .

3. Number of recombinations remains �exponential�.

Use linear algebra in order to replace :

1. Zero-sums by zero linear combinations

2. Recombinations by computation of a vector space basis.

(permits to use LLL, Chèze, Gao, Lecerf,...).



A toric version of the Chèze-Lecerf algorithm (I)

Hypothesis : The subscheme Γ := C · ∂X is reduced (⇐⇒ exterior

facet polynomials of f are square free over L ).

Notations : For any D ≥ ∂X , i : D → X , we let

γ =
∑
p∈|Γ|

γp

the irreducible decomposition of γ := i∗(C ). Then we de�ne the

L-vector space

LC (D) := {µ ∈ L|Γ|, 〈γµ, ·〉D ≡ 0},

where µ = (µp)p∈|Γ|, γµ :=
∑
µpγp.



A toric version of the Chèze-Lecerf algorithm (II)

Theorem 3 (-) Let C = C1 + · · ·+ Cs be the irreducible

decomposition of C (over L). Then dim LC (D) ≥ s, and

D ≥ 2 div∞(f ) =⇒ dim LC (D) = s.

In that case, i∗(Cj) = γµj where (µ1, . . . , µs) is the reduced

echelon basis of LC (D).



Sketch of proof

• Easy : 〈µ1, . . . , µs〉 ⊂ LC (D), dim s for all D.

• Suppose now D = 2 div∞(f ) and let µ ∈ LC (D). Then,

1. γµ lifts and there exists ω ∈ H0(Ω1

X (log(−KX ))⊗OX (C )),

• i∗(ω)p = µp i
∗(df /f )p ∀ p ∈ |Γ| ;

• i∗(dω) = 0 ∈ H0(Ω2

X (2C − KX )⊗OD).

2. Using D ' 2C , we obtain

dω ∈ H0(Ω2

X (2C − D))⇒ ω =
c

f 2
dx ∧ dy

xy
⇒ dω = 0.

3. By a (variant of) a theorem of Ruppert, we deduce that

ω =
s∑

j=1

cjdfj/fj + a1dx/x + a2dy/y , cj ∈ L.

4. We deduce that µ = c1µ1 + · · ·+ csµs . �



Further comments

1. By Theorem 2, we can compute the reduced echelon basis of

LC (D) (so the factorizaton of f ) without using a precision

greater than div∞(f ).

2. Theorem 1 is valid in a non toric completion of SpecL[x , y ]
=⇒ One might improve the algorithms when C has (non toric)

singularities along the boundary ∂X !

3. Better choices of D ?

4. CharK 6= 0 ?



Thank you !

(Especially for those who missed their plane to follow my talk)


