
ACM Communications in Computer Algebra, Vol. 42, No. 3, September 2008 ISSAC 2008 Poster Abstracts

Absolute Factoring of bidegree Bivariate Polynomials∗

G. Chèze, M. Elkadi, A. Galligo, M. Weimann

September, 2008

Abstract

We describe an efficient algorithm and an implementation for computing an absolute factorization of a bivariate polynomial
with a given bidegree. Results of experimentation and an illustrative example are provided.
This algorithm is a generalization of the previous one by Rupprecht-Galligo-Chèze which works after a generic change of
coordinates. It relies on a general algorithmic approach based on a study of the curve defined by the polynomial to factorize in
a toric surface.

1 Introduction
Polynomial absolute factorization has been considered from many points of view but during the last decade two main strategies
have been quite successful. An algebraic approach which relies on the study of Ruppert-Gao matrix improved in [Lec07] to
provide an algorithm with a quasi-optimal complexity. And a geometric approach based on a zero-sum criterion (à la Sasaki),
provides very efficient semi-numerical probabilistic algorithms able to deal with polynomials having degree up to 200 [Chez04].

The zero-sum criterion can be considered as a consequence of Wood’s theorem on algebraic interpolation of a family of
analytic germs of curves. A generalization of this theorem is adapted to the factorization of polynomials with given Newton
polytopes [EGW08]. Here we concentrate on the bidegree case.

In our model of computation the input is a polynomial with integer coefficients and the output is a list of polynomials with
coefficients in an algebraic extension of Q which should also be computed. In order to determine these coefficients the strategy
consists in embedding Q in C and representing approximations of these coefficients by bigfloats. Then conjugacy relations are
used to recognize an algebraic presentation of an extension ofQ together with an exact algebraic presentation of the coefficients.

We assume that the polynomial f ∈ Z[x,y] is irreducible, that a generic translation was performed toghether with a homo-
thetic transformation such that the constant term in f is equal to 1, and the bidegree of f is (m,n).

2 Representation and interpolation
Proposition 1. Let f ∈ Z[x,y] be an irreducible polynomial with constant term equal to 1. Denote by f = f1 . . . fq its absolute
factorization. Then the irreducible absolute factors fi of f are conjugated over Q and their constant term is equal to 1.

The absolute factorization of f is completely determined by the number of absolute factors q, an irreducible monic univariate
polynomial g(t) ∈ Z[t] defining a finite extension K=Q[t]/

(
g(t)

)
, and the coefficients of f1 (which are algebraic integers) in

K. The bidegree of each factor fi is (m1,n1) = (m
q , n

q).
The absolute irreducible factors of f are in one-to-one correspondence with the irreducible components of the affine curve

C = {(x,y) ∈ C2 : f (x,y) = 0}. This curve intersects transversely the line y = 0 (resp. x = 0) in m (resp. n) distinct points
denoted by Mi = (xi,0) (resp. N j = (0,yi)), and moreover they are all distinct from the origin. The germs of C at these points
form m+n curves which can be parameterized. An interesting way to achieve that parameterization is to cut C by the family of
conics xy−a = 0, a varies near 0. The intersection points are denoted byM1(a), . . . ,Mm(a) and N1(a), . . . ,Nn(a).

Let I ⊂ {1, . . . ,m} and J ⊂ {1, . . . ,n}. We define the trace of the coordinate function y with respect to I,J as

(TrC y)I,J(a) := ∑
i∈I

y(Mi(a))+ ∑
j∈J

y(N j(a)).

The curve C is absolutely irreducible iff this function is affine in a only for I = {1, . . . ,m} and J = {1, . . . ,n} [EGW08].

∗This research was partly supported by the french ANR contrat Gecko. Elkadi and Galligo are also members of the Galaad project team, INRIA-UNS.

151

Vol. 42, No. 3, September 2008 ISSAC 2008 Poster Abstracts

The implicit function theorem applied to f at points Mi (resp. N j) gives the following Taylor expansions: y = 1
xi

a− ci
x3

i
a2 +

O(a3) (resp. y = y j +
a j
y j

a− a2
j

y3
j
a2 + b j

y2
j
a2 +O(a3).

The criterion in the bidegree case is explicitly: Two subsets of intersection points between C and the two axes, indexed by
I ⊂ {1, . . . ,m} and J ⊂ {1, . . . ,n}, correspond to an absolute factor of f iff

∑
i∈I

(− ci

x3
i
)+ ∑

j∈J
(−a2

j

y3
j
+

b j

y2
j
) = 0. (1)

3 Algorithm, implementation and experimentation
As in [Chez04], good approximations of roots xi and y j are computed by a Newton process. Then the LLL algorithm can be
applied to solve a knapsack problem of size m + n associated to the previous sums and determine the partitions of {1, . . . ,m}
and {1, . . . ,n} in q subsets denoted by Ik and Jk, k = 1, . . . ,q. Each pair of such subsets should correspond to a factor fk of f , a
polynomial of bidegree (m

q , n
q). The solutions of fk(x,0) = 0 (resp. fk(0,y) = 0) are the Mi (resp. N j) indexed by Ik (resp. Jk).

As the constant term of f is 1, good approximations of fk(x,0) and of fk(0,y) can be computed.
Our algorithm consists in applying Hensel liftings with respect to y to lift the obtained approximation of fk(x,0) to an

approximate factorization of f . We know that the factors must be conjugated and their coefficients are conjugated algebraic
integers. So an irreducible monic polynomial g(z) defining a field extension is recovered from a sufficiently good approximation
by bigfloats of coefficients as in [ChGa06]. Then the exact expression of the coefficients of a factor f1 is recovered.

The structure of this algorithm is similar to the one described in details in [ChGa06] and the costs of all steps in the
two algorithms are comparable, except the lifting step. Indeed, the new algorithm needs only n1 = n

q linear steps (or log(n1)
quadratic steps) of Hensel liftings of polynomials of degrees m1 = m

q ,m−m1n instead of polynomials of degrees m1 +n1,m−
m1−n1. This makes a significant difference when m is much smaller than n.

Example 1. We apply our algorithm to a simple randomly generated example with m = 4, n = 6. The precision is set to
Digits := 10, approximations of roots y j and xi are computed. Then following the previous formulae, the coefficients to be
summed are:

BBy := [−2.657975570,−.2371654537+13.23148974∗ I,−.2371654537−13.23148974∗ I,

−1521.517910−226.3038301∗ I,−1521.517910+226.3038301∗ I,−1.831875847],

BBx := [−0.3884114512e−1,1.153103449+2.550219536∗ I,1.153103449−2.550219536∗ I,3045.732635].

We get only two (approximate) zero sums, one of them is:

BBy[4]+BBy[5]+BBy[1]+BBx[1]+BBx[4] =−0.00002

when the other sums are much bigger than 1 in norm.
So we estimate that q = 2 and we build two approximate factors of f (x,0) (resp. f (0,y)) with constant term equal to 1:

15.0710∗ x2 +26.7279∗ x+1.00000 and .9289∗ x2 +1.2720∗ x+ .9999.

The minimal polynomial of the first coefficient is G(t) = (t−15.0710)(t− .9289) = t2−15.999∗ t +13.999. So we recognize
g(t) = t2−16∗ t +14. The roots of g(t) are 8+5∗√2 and 8−5∗√2. Hence the field is K=Q(

√
2). Then we recognize the

coefficients of f1(x,0), f2(x,0), f1(0,y) and f2(0,y). For instance the first coefficient of f1(x,0) is 8+5∗√2.
Then we proceed to the Hensel liftings, taking advantage that we already know the coefficients of f1(0,y) and f2(0,y).

Therefore at each step the inverse of the Sylvester matrix of f1(x,0) and f2(x,0) is used to determine m coefficients.

We implemented the steps of the algorithm in Maple and tested it on examples constructed with random data. Here are the
details on the routines and the timmings corresponding to an example of total degree 100 and bidegre (m = 20,n = 80). We
will see that it has 4 absolute factors. As a preprocessing, we perform a generic translation and a homothetic transformation to
get a polynomial f (x,y) with integer coefficients and constant term equal to 1.

1. Computation of approximate roots of f (x,0) and f (0,y), Digits is set to 200. Then the m +n coefficients BBx and BBy,
to be summed, are computed by evaluation of the formulae (1). This step took about 20 seconds and used 20 MO of
memory.

152

G. Chèze, M. Elkadi, A. Galligo, M. Weimann

2. Solution of the knapsack problem. We used the LLL function from the package IntegerRelations with the option integer,
then simplified the output by a row echelon reduction. We got a partition with 4 subsets. This step took about 900 seconds
and used 30 MO of memory.

3. Computation of good approximations of fk(x,0), k = 1..4, then the construction of cofactors gk(x,0) := f
fk

, and similarly
fk(0,y) and gk(0,y).

With the 4 first coefficients, construction of an approximate minimal polynomial of the extension field. Recognition of
its integer coefficients. We then used the function OptimizedRepresentation in Magma to get a minimal polynomial of
the extension field with smaller coefficients. In our example it was simply the extension Q(

√
2,
√

3). This step took 10
seconds and used 10 MO of memory.

4. Recognition of exact coefficients of f1(x,0), g1(x,0), f1(0,y) and g1(0,y) in Q(
√

2,
√

3). This step took less than 10
seconds and used no additional memory.

5. Inversion of the (m,m) Sylvester matrix of f1(x,0) and g1(x,0). This step took about 500 seconds and used 150 MO of
memory.

6. n1 linear Hensel liftings by applying the inversed matrix recursively to the vector of the coefficients of f −d j−1 f ∗d j−1g−
y j ∗g1(x,0)∗ coe f f (f1(0,y),y, j)− y j ∗ f1(x,0)∗ coe f f (g1(0,y),y, j),y, j). This step took about 5000 seconds and used
50 MO of memory.

7. In total it took less than 2 hours to factor this polynomial and most of the time was used in Hensel liftings.

4 Conclusion
The presented symbolic-numeric algorithm produces efficiently exact absolute factorization of a bivariate polynomial when its
bidegree is known. The experimentations show encouraging results.

In a near future we will implement and compare several algorithms in the computer algebra system and library under
development Mathemagix.

References
[Chez04] G. CHÈZE, Absolute polynomial factorization in two variables and the knapsack problem, in ISSAC 2004, ACM,

New York, 2004, pp. 87–94.

[ChGa06] G. CHÈZE AND A. GALLIGO, From an approximate to an exact absolute polynomial factorization, J. Symbolic
Comput., 41 (2006), pp. 682–696.

[EGW08] M. ELKADI, A. GALLIGO, M. WEIMANN, Towards Absolute Toric Factorization, J. Symb. Comp, (to appear).

[Lec07] G. LECERF, Improved dense multivariate polynomial factorization algorithms, J. Symbolic Comput., 42 (2007),
pp. 477–494.

153

