Bivariate factorization using Newton polytope

Martin WEIMANN

RISC - Linz

24/11/2011

Motivations and results

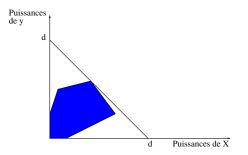
Objective : Factoring bivariate polynomials over a number field in polynomial time in the volume of the Newton polytope.

The Newton polytope

Let $f \in \mathbb{K}[x,y]$ be a bivariate polynomial, $f(x,y) = \sum_{(i,j) \in \mathbb{N}^2} c_{ij} x^i y^j$.

The **Newton polytope** of f is the convex hull of its exponents :

$$N_f = \operatorname{Conv}((i,j) \in \mathbb{N}^2, \ c_{ij} \neq 0).$$

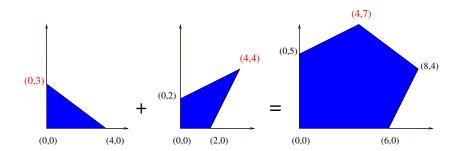


For a fixed degree, many possible polytopes \implies better complexity indicator.

Ostrowski's theorem : $N_{f_1f_2} = N_{f_1} + N_{f_2}$

•
$$f_1 = 1 - 2x^4 + y^3 - xy$$

• $f_2 = 3 - x^2 + xy^2 - 2x^4y^4 + y^2$
• $f_1f_2 = 3 + 2x^6 + 4x^8y^4 - 2x^4y^7 + y^5 + \cdots$



 $\mathsf{N}_{f_1f_2} = \mathsf{N}_{f_1} + \mathsf{N}_{f_2}$

Factorization, the case of dense polynomials

The lifting and recombinations scheme :

- 1. Factorization in $\mathbb{K}[[x]]/(x^k)[y]$ (with good coordinates).
- 2. Recombination of modular factors.
- 3. Factorization in $\mathbb{K}[x, y]$.

• **k=3** : Algo probabilistic, exponential complexity (Chèze-Galligo-Rupprecht).

• **k=2d** : Algo deterministic. Complexity $O(d^{\omega+1})$ with $\omega \approx 2.34$ (Ruppert, Gao, Belabas-Van Hoeij et al., Lecerf, etc).

Problem : Does not take into account the Newton polytope.

Main result

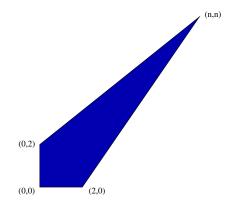
Definition: We say that f is **non degenerated** if $0 \in N_f$ and if the exterior facet polynomials are separable.

Theorem 1 (W., J. of Complexity) One can factorize non degenerated bivariate polynomials over a number field in time $\mathcal{O}(Vol(N_f)^{\omega})$ modulo the exterior facets factorization.

Generalizes the algorithms of Lecerf and Chèze-Lecerf to the case generic/polytope. Advantages :

- Univariate factorization (much) faster.
- ► For a fixed volume, there exist arbitrarly high degrees.

A characteristic example



- Chèze-Lecerf : 1 univariate factorization of degree 2n and O(n^{ω+1}) operations.
- Theorem 1 : 2 univariate factorizations of degree 2 and O(n^w) operations.

The algorithm

ALGORITHM

Input : $f \in \mathbb{K}[x, y]$ non degenerate. **Output** : Irreducible rational factors of f.

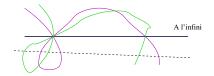
- Step 1. Univariate facet factorization (black-box)
- Step 2. Hensel lifting (Newton iteration)
- Step 3. Recombination (linear algebra)
- Step 4. Factors computation (interpolation).

Step 3?

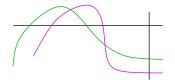
Geometry

Example of bidegree (4, 2)

• Classical approach : we look at the curve of f in \mathbb{P}^2 :

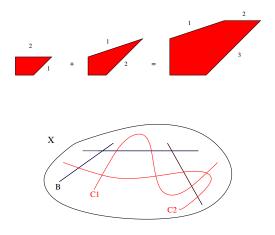


• Toric approach : we look at the curve of f in $\mathbb{P}^1 \times \mathbb{P}^1$.



The general case : toric compactification

Let X be the **toric completion** of \mathbb{K}^2 defined by the polytope of f. Intersection of the curve $C \subset X$ of f with the boundary $B = X \setminus \mathbb{K}^2$ given by exterior facet polynomials factorizations.



Recombinations

- Given :
 - $D \in Div(X)$ effective with support B (lifting precision)
 - ▶ Local decomposition $C \cap D = \sum_{P \in P} \gamma_P$ (lifted facet factorization).
- We want :
 - The decomposition C ∩ D = γ₁ + · · · + γ_s induced by the irreducible decomposition C = C₁ + · · · + C_s.
- We reduce to a problem of linear algebra :
 - Let $V \subset {\sf Div}(D) \otimes {\mathbb K}$ generated by the γ_P 's.
 - Let $W \subset V$ generated by the γ_i 's
 - Let $V(D) \subset V$ generated by the γ 's restriction of divisors on X. One has :

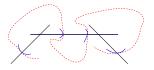
$$W \subset V(D) \subset V$$

• To solve :

- Equations of $V(D) \subset V$ (lifting conditions)?
- For which D we have W = V(D) (sufficient precision)?

A theorem on extensions of line bundles

Equations of $V(D) \subset V \iff$ criterions of **algebraic osculation** on the boundary of X.



Theorem 2 (W.) Let $D \subset X$ with support B. There is an exact sequence

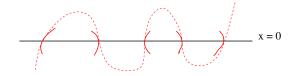
$$0
ightarrow {
m Pic}(X)
ightarrow {
m Pic}(D) \stackrel{lpha}{
ightarrow} H^0(X, \Omega^2_X(D))^{
m v}
ightarrow 0$$

where $\alpha(L)$ associates to ψ the sum of the residues of a primitive of ψ along the zeroes of a section of L.

Proof : Serre duality, Dolbeault cohomology, residue currents.

A simple example : the Reiss relation

Suppose $X = \mathbb{P}^2$ and $D \simeq 3\mathbb{P}^1$. Suppose $L \in Pic(D)$ defined by $\phi_j \in \mathbb{K}[[x]]/(x^3)$, j = 1, ..., d.



We have $h^0(\Omega^2_{\mathbb{P}^2}(3)) = 1$, so a unique extension condition. We obtain

L extends to
$$X \iff \sum_j \phi_j^{\prime\prime}(0) = 0.$$

We recover the **Reiss relation**.

The good lifting precision (choice of D)

Theorem 3 (W.) If $D \ge 2 \operatorname{div}_{\infty}(f)$, then W = V(D).

Proof. Logarithmic forms, toric cohomology, Gao-Ruppert's Theorem.

Corollary Recombinations $\iff \mathcal{O}(Vol(N_f))$ linear equations and r unknowns, r the number of facet factors.

Proof. Thm 2, thm 3 and $h^0(\Omega^2_X(2C)) = \mathcal{O}(\operatorname{Vol}(N_f))$.

Example. In the dense case, we recover a theorem of Lecerf :

Factorization $\operatorname{mod}(x^{2d}) \Longrightarrow \begin{cases} \operatorname{recombination with linear algebra} \\ \mathcal{O}(d) \operatorname{unknowns}, \mathcal{O}(d^2) \operatorname{equations}. \end{cases}$

Complexity

Complexity analysis

Let $\Delta := Vol(N_f)$.

1. Lifting : $\widetilde{O}(d_i k_i)$ for the *i*-th facet, with d_i the degree, k_i the precision. We have

$$\sum k_i d_i = \sum k_i (C \cdot D_i) = C \cdot (\sum k_i D_i) = C \cdot D = 2C^2 = 4\Delta,$$

so a total of $\widetilde{\mathcal{O}}(\Delta)$ operations.

- **2. Recombinations.** Linear system of $\mathcal{O}(\Delta)$ equations, *r* unknowns.
 - Matrix computation : $\widetilde{\mathcal{O}}(\Delta^2)$ operations (arithmetic).
 - Reduced echelon basis : $\mathcal{O}(\Delta r^{\omega-1}) \subset \mathcal{O}(\Delta^{\omega})$ operations.

3. Factors computation. Interpolation.

- Polytopes computation : negligeable.
- ► Factors : $\sum_i O(\Delta_i^{\omega}) \subset O(\Delta^{\omega})$ operations (Ostrowski's theorem).

Improvements

- In theory : We conjecture a complexity *O*(Δr^{ω-1}) (dense case : *O*(d^{ω+1}), Lecerf et al.). Requires :
 - Better analysis of usual algorithm in the sparse case.
 - Fast toric interpolation "multi-charts".
- In practice :
 - Combine probabilistic (Hensel with small precision) and deterministic (high precision).
 - Use lazy calculus.
- Bit-complexity :
 - Control on the size of the coefficients.
 - Theoretical bound / arithmetic of toric varieties (using extended Newton polytope of Philipon, Sombra et al.?).

Conclusion

Perspectives

• Generic case w.r.t the degree : $\mathcal{O}(d^{\omega+1})$ (Lecerf, Van Hoeij,...)

• Generic case w.r.t the polytope : $\mathcal{O}(\Delta^{\omega})$ (Weimann).

• General case? Study relations **singularities** and **factorization**.

More singularities \implies Faster factorization

An underlying open problem...

Let $X = \mathbb{A}^2 \cup B$ be a smooth compactification such that :

- ► *B* is a normal crossing union of rational curves.
- B intersects transversally the curve of C of f.

Find an effective divisor D supported on B with size controlled by f and such that

$$\left\{egin{array}{l} H^1(\Omega^1_X(\log(B)\otimes \mathcal{O}_X(\mathcal{C}-D))=0\ H^0(\Omega^2_X(B+2\mathcal{C}-D))=0. \end{array}
ight.$$

- When X is toric, one can choose $D \in |2C|$.
- In general, things become more complicated...