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Motivations and results



Objective : Factoring bivariate polynomials over a number �eld in

polynomial time in the volume of the Newton polytope.



The Newton polytope

Let f ∈ K[x , y ] be a bivariate polynomial, f (x , y) =
∑

(i,j)∈N2 cijx
iy j .

The Newton polytope of f is the convex hull of its exponents :

Nf = Conv((i , j) ∈ N2, cij 6= 0).
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For a �xed degree, many possible polytopes =⇒ better complexity indicator.



Ostrowski's theorem : Nf1f2 = Nf1 +Nf2

I f1 = 1− 2x4 + y3 − xy

I f2 = 3− x2 + xy2 − 2x4y4 + y2

I f1f2 = 3 + 2x6 + 4x8y4 − 2x4y7 + y5 + · · ·
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Factorization, the case of dense polynomials

The lifting and recombinations scheme :

1. Factorization in K[[x ]]/(xk)[y ] (with good coordinates).

2. Recombination of modular factors.

3. Factorization in K[x , y ].

• k=3 : Algo probabilistic, exponential complexity
(Chèze-Galligo-Rupprecht).

• k=2d : Algo deterministic. Complexity O(dω+1) with ω ≈ 2.34

(Ruppert, Gao, Belabas-Van Hoeij et al., Lecerf, etc).

Problem : Does not take into account the Newton polytope.



Main result

De�nition : We say that f is non degenerated if 0 ∈ Nf and if

the exterior facet polynomials are separable.

Theorem 1 (W., J. of Complexity) One can factorize non

degenerated bivariate polynomials over a number �eld in time

O(Vol(Nf )ω) modulo the exterior facets factorization.

Generalizes the algorithms of Lecerf and Chèze-Lecerf to the case
generic/polytope. Advantages :

I Univariate factorization (much) faster.

I For a �xed volume, there exist arbitrarly high degrees.



A characteristic example

(n,n)

(2,0)(0,0)
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I Chèze-Lecerf : 1 univariate factorization of degree 2n and O(nω+1)
operations.

I Theorem 1 : 2 univariate factorizations of degree 2 and O(nω)
operations.



The algorithm

ALGORITHM

Input : f ∈ K[x , y ] non degenerate.

Output : Irreducible rational factors of f .

I Step 1. Univariate facet factorization (black-box)

I Step 2. Hensel lifting (Newton iteration)

I Step 3. Recombination (linear algebra)

I Step 4. Factors computation (interpolation).

Step 3 ?



Geometry



Example of bidegree (4, 2)
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I Classical approach : we look at the curve of f in P2 :

A l’infini

I Toric approach : we look at the curve of f in P1 × P1.



The general case : toric compacti�cation

Let X be the toric completion of K2 de�ned by the polytope of f .

Intersection of the curve C ⊂ X of f with the boundary B = X \K2

given by exterior facet polynomials factorizations.

+ =

2

1
2

1

1

2

3

B

C1

C2

X



Recombinations

• Given :

I D ∈ Div(X ) e�ective with support B (lifting precision)

I Local decomposition C ∩ D =
∑

P∈P γP (lifted facet factorization).

• We want :

I The decomposition C ∩ D = γ1 + · · ·+ γs induced by the irreducible
decomposition C = C1 + · · ·+ Cs .

• We reduce to a problem of linear algebra :

I Let V ⊂ Div(D)⊗K generated by the γP 's.

I Let W ⊂ V generated by the γi 's

I Let V (D) ⊂ V generated by the γ's restriction of divisors on X . One has :

W ⊂ V (D) ⊂ V

• To solve :

I Equations of V (D) ⊂ V (lifting conditions) ?

I For which D we have W = V (D) (su�cient precision) ?



A theorem on extensions of line bundles

Equations of V (D) ⊂ V ⇐⇒ criterions of algebraic osculation on

the boundary of X .

Theorem 2 (W.) Let D ⊂ X with support B. There is an exact

sequence

0→ Pic(X )→ Pic(D)
α→ H0(X ,Ω2

X (D))v → 0

where α(L) associates to ψ the sum of the residues of a primitive of

ψ along the zeroes of a section of L.

Proof : Serre duality, Dolbeault cohomology, residue currents.



A simple example : the Reiss relation

Suppose X = P2 and D ' 3P1. Suppose L ∈ Pic(D) de�ned by

φj ∈ K[[x ]]/(x3), j = 1, . . . , d .

x = 0

We have h0(Ω2

P2(3)) = 1, so a unique extension condition. We

obtain

L extends to X ⇐⇒
∑
j

φ
′′
j (0) = 0.

We recover the Reiss relation.



The good lifting precision (choice of D)

Theorem 3 (W.) If D ≥ 2 div∞(f ), then W = V (D).

Proof. Logarithmic forms, toric cohomology, Gao-Ruppert's Theorem.

Corollary Recombinations ⇐⇒ O(Vol(Nf )) linear equations and

r unknowns, r the number of facet factors.

Proof. Thm 2, thm 3 and h0(Ω2

X (2C )) = O(Vol(Nf )).

Example. In the dense case, we recover a theorem of Lecerf :

Factorization mod(x2d) =⇒

{
recombination with linear algebra

O(d) unknowns,O(d2) equations.



Complexity



Complexity analysis

Let ∆ := Vol(Nf ).

1. Lifting : Õ(diki ) for the i-th facet, with di the degree, ki the
precision. We have∑

kidi =
∑

ki (C · Di ) = C · (
∑

kiDi ) = C · D = 2C 2 = 4∆,

so a total of Õ(∆) operations.

2. Recombinations. Linear system of O(∆) equations, r unknowns.

I Matrix computation : Õ(∆2) operations (arithmetic).

I Reduced echelon basis : O(∆rω−1) ⊂ O(∆ω) operations.

3. Factors computation. Interpolation.

I Polytopes computation : negligeable.

I Factors :
∑

i O(∆ω
i ) ⊂ O(∆ω) operations (Ostrowski's theorem).

�



Improvements

I In theory : We conjecture a complexity Õ(∆rω−1) (dense case :

Õ(dω+1), Lecerf et al.). Requires :

I Better analysis of usual algorithm in the sparse case.
I Fast toric interpolation "multi-charts".

I In practice :

I Combine probabilistic (Hensel with small precision) and
deterministic (high precision).

I Use lazy calculus.

I Bit-complexity :

I Control on the size of the coe�cients.
I Theoretical bound / arithmetic of toric varieties (using

extended Newton polytope of Philipon, Sombra et al. ?).



Conclusion



Perspectives

I Generic case w.r.t the degree : O(dω+1) (Lecerf, Van Hoeij,. . .)

I Generic case w.r.t the polytope : O(∆ω) (Weimann).

I General case ? Study relations singularities and factorization.

More singularities =⇒ Faster factorization



An underlying open problem...

Let X = A2 ∪ B be a smooth compacti�cation such that :

I B is a normal crossing union of rational curves.

I B intersects transversally the curve of C of f .

Find an e�ective divisor D supported on B with size controlled
by f and such that{

H1(Ω1

X (log(B)⊗OX (C − D)) = 0

H0(Ω2

X (B + 2C − D)) = 0.

I When X is toric, one can choose D ∈ |2C |.
I In general, things become more complicated...


