Bivariate factorization using Newton polytope

Martin WEIMANN

RISC - Linz

24/11/2011

Motivations and results

Objective : Factoring bivariate polynomials over a number field in polynomial time in the volume of the Newton polytope.

The Newton polytope

Let $f \in \mathbb{K}[x, y]$ be a bivariate polynomial, $f(x, y)=\sum_{(i, j) \in \mathbb{N}^{2}} c_{i j} x^{i} y^{j}$.
The Newton polytope of f is the convex hull of its exponents :

$$
\mathbb{N}_{f}=\operatorname{Conv}\left((i, j) \in \mathbb{N}^{2}, c_{i j} \neq 0\right)
$$

For a fixed degree, many possible polytopes \Longrightarrow better complexity indicator.

Ostrowski's theorem : $\mathrm{N}_{f_{1} f_{2}}=\mathrm{N}_{f_{1}}+\mathrm{N}_{f_{2}}$

- $f_{1}=1-2 x^{4}+y^{3}-x y$
- $f_{2}=3-x^{2}+x y^{2}-2 x^{4} y^{4}+y^{2}$
- $f_{1} f_{2}=3+2 x^{6}+4 x^{8} y^{4}-2 x^{4} y^{7}+y^{5}+\cdots$

$N_{f_{1} f_{2}}=N_{f_{1}}+N_{f_{2}}$

Factorization, the case of dense polynomials

The lifting and recombinations scheme:

1. Factorization in $\mathbb{K}[[x]] /\left(x^{k}\right)[y]$ (with good coordinates).
2. Recombination of modular factors.
3. Factorization in $\mathbb{K}[x, y]$.

- $\mathbf{k}=\mathbf{3}$: Algo probabilistic, exponential complexity (Chèze-Galligo-Rupprecht).
- $\mathbf{k}=\mathbf{2 d}$: Algo deterministic. Complexity $\mathcal{O}\left(d^{\omega+1}\right)$ with $\omega \approx 2.34$
(Ruppert, Gao, Belabas-Van Hoeij et al., Lecerf, etc).

Problem: Does not take into account the Newton polytope.

Main result

Definition : We say that f is non degenerated if $0 \in \mathrm{~N}_{f}$ and if the exterior facet polynomials are separable.

Theorem 1 (W., J. of Complexity) One can factorize non degenerated bivariate polynomials over a number field in time $\mathcal{O}\left(\operatorname{Vol}\left(\mathrm{N}_{f}\right)^{\omega}\right)$ modulo the exterior facets factorization.

Generalizes the algorithms of Lecerf and Chèze-Lecerf to the case generic/polytope. Advantages :

- Univariate factorization (much) faster.
- For a fixed volume, there exist arbitrarly high degrees.

A characteristic example

- Chèze-Lecerf : 1 univariate factorization of degree $2 n$ and $\mathcal{O}\left(n^{\omega+1}\right)$ operations.
- Theorem 1:2 univariate factorizations of degree 2 and $\mathcal{O}\left(n^{\omega}\right)$ operations.

The algorithm

ALGORITHM

Input : $f \in \mathbb{K}[x, y]$ non degenerate.
Output : Irreducible rational factors of f.

- Step 1. Univariate facet factorization (black-box)
- Step 2. Hensel lifting (Newton iteration)
- Step 3. Recombination (linear algebra)
- Step 4. Factors computation (interpolation).

Step 3?

Geometry

Example of bidegree $(4,2)$

- Classical approach : we look at the curve of f in \mathbb{P}^{2} :

- Toric approach : we look at the curve of f in $\mathbb{P}^{1} \times \mathbb{P}^{1}$.

The general case : toric compactification

Let X be the toric completion of \mathbb{K}^{2} defined by the polytope of f. Intersection of the curve $C \subset X$ of f with the boundary $B=X \backslash \mathbb{K}^{2}$ given by exterior facet polynomials factorizations.

Recombinations

- Given :
- $D \in \operatorname{Div}(X)$ effective with support B (lifting precision)
- Local decomposition $C \cap D=\sum_{P \in \mathcal{P}} \gamma_{P}$ (lifted facet factorization).
- We want :
- The decomposition $C \cap D=\gamma_{1}+\cdots+\gamma_{s}$ induced by the irreducible decomposition $C=C_{1}+\cdots+C_{s}$.
- We reduce to a problem of linear algebra :
- Let $V \subset \operatorname{Div}(D) \otimes \mathbb{K}$ generated by the γ_{p} 's.
- Let $W \subset V$ generated by the γ_{i} 's
- Let $V(D) \subset V$ generated by the γ 's restriction of divisors on X. One has:

$$
W \subset V(D) \subset V
$$

- To solve :
- Equations of $V(D) \subset V$ (lifting conditions)?
- For which D we have $W=V(D)$ (sufficient precision)?

A theorem on extensions of line bundles

Equations of $V(D) \subset V \Longleftrightarrow$ criterions of algebraic osculation on the boundary of X.

Theorem 2 (W.) Let $D \subset X$ with support B. There is an exact sequence

$$
0 \rightarrow \operatorname{Pic}(X) \rightarrow \operatorname{Pic}(D) \xrightarrow{\alpha} H^{0}\left(X, \Omega_{X}^{2}(D)\right)^{v} \rightarrow 0
$$

where $\alpha(L)$ associates to ψ the sum of the residues of a primitive of ψ along the zeroes of a section of L.

Proof: Serre duality, Dolbeault cohomology, residue currents.

A simple example : the Reiss relation

Suppose $X=\mathbb{P}^{2}$ and $D \simeq 3 \mathbb{P}^{1}$. Suppose $L \in \operatorname{Pic}(D)$ defined by $\phi_{j} \in \mathbb{K}[[x]] /\left(x^{3}\right), j=1, \ldots, d$.

We have $h^{0}\left(\Omega_{\mathbb{P}^{2}}^{2}(3)\right)=1$, so a unique extension condition. We obtain

$$
L \text { extends to } X \Longleftrightarrow \sum_{j} \phi_{j}^{\prime \prime}(0)=0 .
$$

We recover the Reiss relation.

The good lifting precision (choice of D)

Theorem 3 (W.) If $D \geq 2 \operatorname{div}_{\infty}(f)$, then $W=V(D)$.

Proof. Logarithmic forms, toric cohomology, Gao-Ruppert's Theorem.

Corollary Recombinations $\Longleftrightarrow \mathcal{O}\left(\operatorname{Vol}\left(\mathrm{N}_{f}\right)\right)$ linear equations and r unknowns, r the number of facet factors.

Proof. Thm 2, thm 3 and $h^{0}\left(\Omega_{X}^{2}(2 C)\right)=\mathcal{O}\left(\operatorname{Vol}\left(\mathrm{N}_{f}\right)\right)$.

Example. In the dense case, we recover a theorem of Lecerf :
Factorization $\bmod \left(x^{2 d}\right) \Longrightarrow\left\{\begin{array}{l}\text { recombination with linear algebra } \\ \mathcal{O}(d) \text { unknowns, } \mathcal{O}\left(d^{2}\right) \text { equations. }\end{array}\right.$

Complexity

Complexity analysis

Let $\Delta:=\operatorname{Vol}\left(\mathrm{N}_{f}\right)$.

1. Lifting : $\tilde{\mathcal{O}}\left(d_{i} k_{i}\right)$ for the i-th facet, with d_{i} the degree, k_{i} the precision. We have

$$
\sum k_{i} d_{i}=\sum k_{i}\left(C \cdot D_{i}\right)=C \cdot\left(\sum k_{i} D_{i}\right)=C \cdot D=2 C^{2}=4 \Delta
$$

so a total of $\widetilde{\mathcal{O}}(\Delta)$ operations.
2. Recombinations. Linear system of $\mathcal{O}(\Delta)$ equations, r unknowns.

- Matrix computation : $\widetilde{\mathcal{O}}\left(\Delta^{2}\right)$ operations (arithmetic).
- Reduced echelon basis : $\mathcal{O}\left(\Delta r^{\omega-1}\right) \subset \mathcal{O}\left(\Delta^{\omega}\right)$ operations.

3. Factors computation. Interpolation.

- Polytopes computation : negligeable.
- Factors $: \sum_{i} \mathcal{O}\left(\Delta_{i}^{\omega}\right) \subset \mathcal{O}\left(\Delta^{\omega}\right)$ operations (Ostrowski's theorem).

Improvements

- In theory : We conjecture a complexity $\widetilde{\mathcal{O}}\left(\Delta r^{\omega-1}\right)$ (dense case :
$\widetilde{\mathcal{O}}\left(d^{\omega+1}\right)$, Lecerf et al.). Requires :
- Better analysis of usual algorithm in the sparse case.
- Fast toric interpolation "multi-charts".
- In practice :
- Combine probabilistic (Hensel with small precision) and deterministic (high precision).
- Use lazy calculus.
- Bit-complexity :
- Control on the size of the coefficients.
- Theoretical bound / arithmetic of toric varieties (using extended Newton polytope of Philipon, Sombra et al. ?).

Conclusion

Perspectives

- Generic case w.r.t the degree : $\mathcal{O}\left(d^{\omega+1}\right)($ Lecerf, Van Hoeij,...)

- Generic case w.r.t the polytope : $\mathcal{O}\left(\Delta^{\omega}\right)$ (Weimann).

- General case? Study relations singularities and factorization.

An underlying open problem...

Let $X=\mathbb{A}^{2} \cup B$ be a smooth compactification such that :

- B is a normal crossing union of rational curves.
- B intersects transversally the curve of C of f.

Find an effective divisor D supported on B with size controlled by f and such that

$$
\left\{\begin{array}{l}
H^{1}\left(\Omega_{X}^{1}\left(\log (B) \otimes \mathcal{O}_{X}(C-D)\right)=0\right. \\
H^{0}\left(\Omega_{X}^{2}(B+2 C-D)\right)=0
\end{array}\right.
$$

- When X is toric, one can choose $D \in|2 C|$.
- In general, things become more complicated...

