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Introduction

Absolute values of a field - like the p-adic absolute value on Q - played an important
role in the development of number theory in the beginning of the 20th century. In the
1930’s, Krull generalized the notion of an absolute value to that of a valuation with
values in an arbitrary ordered abelian group, generalizing the value group Z of the
usual p-adic valuation on Q. This generalization made possible new applications in
other branches of mathematics, such as algebraic or arithmetic geometry, in particular
the celebrated problem of resolution of singularities.
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These notes intend to give a short introduction to valued fields focusing on the first
steps towards the main problem of valuation theory : given a field extension L/K
and a valuation v of K, describe all possible extensions of v to L. We mainly follow
the book Valued Fields by Engler and Prestel, and some lecture notes of Franziska
Jahnke. We warmly thank the authors.
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1. Valuations

1.1. Ordered abelian groups. An ordered abelian group (Γ,+,≤) is an abelian
group (Γ,+) endowed with a total order ≤ which satisfies : for all a, b, c ∈ Γ,

a ≤ b =⇒ a+ c ≤ b+ c.

If a ̸= 0 , we have either

0 < a < 2a < 3a < · · · or · · · < 3a < 2a < a < 0

from which it follows that a non trivial ordered abelian group Γ is infinite and torsion
free.

We say that Γ is discrete if it admits a minimal positive element.

A subgroup ∆ ⊂ Γ is convex in Γ if for a ∈ Γ, we have

0 ≤ a ≤ b ∈ ∆ =⇒ a ∈ ∆.

The rank of Γ is the number of proper convex subgroups of Γ.

If Γ and ∆ are two ordered abelian groups, the direct product Γ⊕∆ with the lexico-
graphic order

(a, b) < (c, d) ⇐⇒ a < c or (a = c and b < d)

is again an ordered abelian group.

Example 1.1.

(1) The group Z⊕Z with the lexicographic order ⪯ is discrete of rank 2. Namely,
it has only two proper convex subgroups {0} and {0}⊕Z and admits (0, 1) as
a minimal strictly positive element. Notice that the ordered subgroup Z⊕ {0}
is not convex in Z⊕ Z.

(2) The isomorphism (Z⊕Z,+) ≃ (Z+
√
2Z,+) ⊂ (R,+) gives another ordering

≤ on Z ⊕ Z which is induced by that of R. The ordered group (Z ⊕ Z,≤) is
now non-discrete of rank one.

Rank 1 abelian ordered groups are characterized by the following result:

Proposition 1.2. An ordered abelian group Γ has rank 1 if and only if it is order-
isomorphic to a non-trivial subgroup of (R,+) with the canonical ordering induced
from R.

1.2. Valuations and valuation rings. Given an ordered abelian group Γ, we extend
the addition and the order to Γ∪{∞} by setting a+∞ = a and a < ∞ for all a ∈ Γ.

Definition 1.3. A valuation on a field K is a surjective map v : K → Γ∪ {∞} with
Γ an ordered abelian group and such that for all x, y ∈ K,

(1) v(x) = ∞ ⇐⇒ x = 0
(2) v(xy) = v(x) + v(y)
(3) v(x+ y) ≥ min(v(x), v(y))

We say that (K, v) is a valued field with value group Γ. The rank of v is the rank of
Γ. v is said to be discrete if Γ is discrete.
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We deduce immediately the following properties. For all x, y ∈ K :

• v(1) = 0
• v(x) = v(−x)
• v(x−1) = −v(x)
• If v(x) < v(y) then v(x+ y) = v(x).

Definition 1.4. A valuation ring of a field K is a subring O ⊂ K such that for all
x ∈ K∗, one has x ∈ O or x−1 ∈ O.

It follows straightforwardly from the above properties that we can associate to a
valuation v on K a valuation ring of K :

Proposition 1.5. Let (K, v) be a valued field.

• The set
Ov := {x ∈ K, v(x) ≥ 0}

is a valuation ring of K.
• Its group of units is

O×
v = {x ∈ K, v(x) = 0}.

• The complementary set

mv := {x ∈ K, v(x) > 0}
is the unique maximal ideal of Ov. In particular Ov is a local ring.

The quotient field kv := Ov/mv is called the residue field of (K, v). Given x ∈ Ov,
we denote by x ∈ kv its residue class.

Conversely we can associate to any valuation ring of K a valuation on K :

Proposition 1.6. Let O ⊂ K be a valuation ring. Then there exists a valuation v
on K such that O = Ov.

Proof. Let O× stand for the group of units and consider the quotient group

Γ := K×/O×

with the additive law xO× + yO× := xyO×. Consider the relation

xO× ≤ yO× ⇐⇒ y

x
∈ O.

Using that O is a valuation ring, we can check that (Γ,+,≤) is an ordered abelian
group. Let us then define v : K → Γ ∪ {∞} by

v(x) := xO×

if x ∈ K× and v(0) = ∞. We obviously have v(xy) = v(x) + v(y). Also, if v(x) ≤
v(y), then y/x ∈ O. Thus (x + y)/x = 1 + y/x ∈ O from which it follows that
v(x+ y) ≥ v(x) = min(v(x), v(y)). Hence v is defines a valuation on K.

Using that v(1) = 0, we get

Ov := {x ∈ K, v(x) ≥ 0} =
{
x ∈ K,

x

1
∈ O

}
= O,
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as required. □

Corollary 1.7. Any valuation ring O is a local ring.

For a counter-example to the converse assertion, consider R = K[x, y](x,y). This is a
local ring for which neither x/y nor y/x belong to R.

Definition 1.8. We say that two valuations v and w on a field K are equivalent if
there exists a ordered isomorphism γ : Γv → Γw such that w = γ ◦ v.

Proposition 1.9. Two valuations on a field K are equivalent if and only if they have
they have same valuation ring.

Proof. If an ordered isomorphism exists, then obviously Ov = Ow. Conversely, since
v : K× → Γv is a surjective morphism with kernel O×

v , one gets an ordered iso-
morphism γv : K×/O×

v ≃ Γv defined by xO×
v 7→ v(x). We get in the same way

γw : K×/O×
w ≃ Γw. As Ov = Ow implies K×/O×

v = K×/O×
w , one gets the desired

isomorphism γ = γw ◦ γ−1
v . □

With regards to Proposition 1.6 and Proposition 1.9 we may say that there is a one-
to-one correspondence between the valuation rings of K and the valuations on K up
to equivalence. Note that valuation rings of a field K are also uniquely determined
by their maximal ideals :

Lemma 1.10. Let O and O′ be two valuation rings of a field K with respective
maximal ideals m and m′. Then O = O′ if and only if m = m′.

Proof. This follows from the fact that x /∈ O if and only if x−1 ∈ m. □

1.3. Classical examples.

• Any field K admits the trivial valuation v : K → {0} ∪ {∞}. The residue
field is kv = K.

• For any prime p, the field Q admits the p-adic valuation

vp(a/b) = ordp(a)− ordp(b)

where for a ∈ Z, ordp(a) stands for the highest power of p dividing a. It is
discrete of rank one, with value group Z. The valuation ring is the local ring
Z(p) and the residue field is

Z(p)/pZ(p) ≃ Z/pZ = Fp.

• Consider the rational function field K = k(t) over a field k. Given p ∈ k[t]
irreducible, we may define as above the p-adic valuation vp on k(t). The
residue field is isomorphic to the splitting field k[t]/pk[t] of p, finite extension
of k of degree deg(p). The field k(t) admits also the degree valuation v∞

v∞(g/h) := deg(h)− deg(g).

The value group is again Z and the residue field is k.
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• If v is a discrete valuation with v(π) minimal, then m = πO. However O is
Noetherian if and only if rank v = 1 [?]; in that case π is called an uniformizer
of v.

Proposition 1.11. (1) Any non trivial valuation on Q is (equivalent to) a p-adic
valuation for some prime p ∈ N. In other words, the proper valuation rings
of Q are the Z(p) for p a prime.

(2) Any non trivial valuation on k(t) which is trivial on k is either a p-adic val-
uation for some irreducible p ∈ k[t] or the degree valuation v∞.

Proof. (1) Let v be a valuation on Q and let O = Ov. As v(1) = v(1/1) = 0, we get
1 ∈ O and thus Z ⊂ O. Since v is non trivial, there exists p ∈ N× minimal such
that v(p) > 0 and p must be a prime by minimality. If p ∤ n, there exists a Bezout
relation ap + bn = 1 with a, b ∈ Z. Since v(ap) > 0, this forces v(bn) = 0 and so
v(b) = v(n) = 0. Thus the only non-invertible elements in O are multiples of p, and
O = Z(p) as required.

(2) Let v be a non-trivial valuation on k(t) which is trivial on k and let O = Ov. If
t ∈ O, then k[t] ⊂ O and as for point (1), we deduce that v is a p-adic valuation
for some prime p ∈ k[t]. If t /∈ O, then v(t) < 0. Hence t−1 ∈ m and v(tn) > v(tm)
whenever 0 < m < n. Since v is trivial on k, it follows that

v(c0 + · · ·+ cnt
n) = nv(t)

whenever cn ̸= 0. Hence v(a/b) = (deg(b)−deg(a))v(t) , with value group Γ := Zv(t).
By sending v(t) to −1, we get an ordered isomorphism Γ ≃ Z from which it follows
that v is equivalent to the degree valuation v∞. □

2. Extension of valuations

We adress the question to know if valuation v on a field K can be extended to
a given field extension L of K, that is if there exists a valuation w on L such that
w|K = v. Let us start by an easy lemma :

Lemma 2.1. Let K ⊂ L be a field extension. Let v be a valuation on K and w be a
valuation on L. The following statements are equivalent :

(1) w|K = v
(2) Ow ∩K = Ov.
(3) mw ∩K = mv.

Proof. It’s clear that w|K is a valuation onK with valuation ring Ow∩K and maximal
ideal mw ∩ K. Thus, (1) ⇔ (2) follows from Proposition 1.9 and (2) ⇔ (3) follows
from Lemma 1.10. □

With regards to Lemma 2.1, looking for w such that w|K = v amounts to look for
valuation rings of L whose restrictions to K are Ov.
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2.1. Chevalley’s extension theorem.

Theorem 2.2 (Chevalley). Let L be a field, R ⊂ L a subring, and p ⊂ R a prime
ideal of R. Then there is a valuation ring O of L with R ⊂ O and m ∩R = p.

Proof. Denote by Rp the localization of R at p. This is a local ring with unique
maximal ideal pRp. Consider the set

Σ = {(A, I), A ⊂ L subring, I ⊂ A proper ideal, Rp ⊂ A, pRp ⊂ I}.

This set is non empty as it contains (Rp, pRp) and can be given a partial order by

(A, I) < (A′, I ′) ⇐⇒ A ⊂ A′ and I ⊂ I ′.

As Σ is closed under chain, it possesses a maximal element (O,m) by Zorn’s lemma.
We have pRp = m ∩ Rp (the inclusion ⊂ by construction and the reverse inclusion
since pRp is the unique maximal ideal of Rp) from which it follows that pR = m ∩R
as required.

There remains to show that O is a valuation ring. By maximality, m is a maximal
ideal of O. Moreover, m is the unique maximal ideal of O as otherwise the pair
(Om,mOm) would be an element of Σ strictly bigger that (O,m). Hence, (O,m) is a
local ring. In particular, O× = O \m.
If O is not a valuation ring, there exists x ∈ L× such that x, x−1 /∈ O. Then O is

a proper subring of O[x] and O[x−1]. Since (O,m) is maximal in Σ, we must have
mO[x] = O[x] and mO[x−1] = O[x−1]. Therefore, there exist a0, . . . , an, b0, . . . , bm ∈
m such that

(2.1) 1 =
n∑

i=0

aix
i and 1 =

m∑
i=0

bix
−i

with n,m minimal. Suppose that m ≤ n. As b0 ∈ m, we get that

m∑
i=1

bix
−i = 1− b0 ∈ O \m = O×.

Multiplying by xn/(1− b0), we get

m∑
i=1

cix
n−i = xn

where ci = bi/(1− b0) ∈ m. Plugging this into (2.1) gives

1 =
n∑

i=0

aix
i =

n−1∑
i=0

aix
i + an

m∑
i=1

cix
n−i

contradicting the minimality of n. By symmetry, we get also a contradiction if we
assume that n ≤ m. Hence O is a valuation ring. □
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Remark 2.3. The proof of the above theorem shows that the valuation rings of a field
K are precisely the maximal elements in the set of local rings of K partially ordered
by dominance : (A,mA) ≤ (B,mB) iff A ⊂ B and mA = mB ∩ A. In particular, any
local ring is dominated by a valuation ring.

For instance, the local ring R = C[x, y](x,y) is not a valuation ring since a := y/x
satisfies a /∈ R and a−1 /∈ R. We check that

O := C[x, yx−1](x) = C[x, y, yx−1](x,y) ⊃ C[x, y](x,y)

is a valuation ring dominating R (blow-up of the maximal ideal (x, y)).

Corollary 2.4. Let L/K be a field extension. Any valuation v on K admits at least
one extension to the field L.

Proof. By applying Chevalley’s theorem with R = Ov, we get a valuation ring of L
(say O = Ow by Proposition 1.6) containing Ov and such that mw ∩ Ov = mv. We
get w|K = v thanks to Lemma 1.10. □

Terminology. If w extends v from K to L, we say that (K, v) ⊂ (L,w) is a valued
field extension. We say that Ow lies above Ov, or dominates Ov, or extends Ov.

2.2. Integral closure of a ring. Chevalley’s theorem admits another important
consequence for the integral closure of a ring in a field. Let us first remark :

Proposition 2.5. Any valuation ring O of a field K is integrally closed in K.

Proof. Let x ∈ K such that a0+ · · ·+an−1x
n−1+xn = 0 for some ai ∈ O. We need to

show that x ∈ O. If K = O this is obvious. Otherwise, m ̸= 0. Suppose that x /∈ O.
Then x−1 ∈ m and multiplying the original equation by x−n, we get

a0x
−n + · · ·+ an−1x

−1 = −1.

The left hand side belongs to m while −1 ∈ O×, a contradition. □

Theorem 2.6. Let R ⊂ K be a subring of a field K. Then, the integral closure R of
R in K equals

R =
⋂
O∈V

O,

where O ranges over of all valuation rings O of K containing R and whose maximal
ideal m is such that m ∩R is a maximal ideal of R.
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Proof. The inclusion R ⊂
⋂

O∈V O is clear from the above proposition. If now x /∈ R,
then x /∈ R[x−1]. So x−1 ∈ m′ for some maximal ideal m′ of R[x−1]. By Chevalley’s
theorem, there exists (O,m) a valuation ring of L such that R[x−1] ⊂ O and m ∩
R[x−1] = m′. This forces x−1 ∈ m so x /∈ O. There only remains to show that O ∈ V ,
i.e. that the ideal m ∩R if a maximal ideal of R. Since x−1 ∈ m′, the natural map

R −→ R[x−1]/m′

is surjective with kernel m′ ∩ R = m ∩ R (use
∑

ci(x
−1)i + m′ = c0 + m′). Hence

R/m ∩R ≃ R[x−1]/m′. The later ring being a field, the claim follows. □

Remark 2.7. This theorem is of particular importance with regards to the resolution
of singularities of algebraic varieties : if R is an integral finitely generated k-algebra,
then the inclusion R ⊂ R̄ leads to a birational morphism

X̄ = Spec(R̄) −→ X = Spec(R)

of irreducible k-varieties. We say that X̄ is the normalization of X. An important
theorem of Zariski asserts that the normalization resolves the singularities of X in
codimension one. In other words, the singular locus of X̄ has codimension at least two.
In particular, if X is a curve, then X̄ → X is a resolution of singularities (in arbitrary
characteristic). After Zariski, the existence of the resolution of singularitites has
been proved for arbitrary dimension in characteristic zero by the celebrated theorem of
Hironaka, but it remains an open problem in positive characersistic for dimX ≥ 4 (as
well as its “local” version known as the problem of local uniformization). Valuations
play an important role in this story.

Corollary 2.8. Let L/K be any field extension, and let O be a valuation ring of K.
Denote O the integral closure of O in L. We have

O =
⋂

O′

where O′ ranges over the set of all valuation rings of L lying above O.

Proof. If O′ is a valuation ring of L containing O, then O′ lies above O if and only if
m′ ∩ O = m. The claim thus follows from Theorem 2.6. □

Remark 2.9. This Corollary is of particular importance in computational number
theory as it gives a way to compute a Z-basis of the ring of integers OL of a number
field L/Q. Very roughly speaking : compute the valuations rings of L lying above Z(p)

for all prime p ∈ Z (this task is not trivial only for a finite number of primes) and use
a variant of the Chinese Remainder Theorem (see below) to compute the intersection
of these valuation rings.
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2.3. The approximation theorem. The last result of this section is a very helpful
analoguous of the Chinese Remainder Theorem for valuation rings.

Theorem 2.10. Let O1, . . . ,Or be valuation rings of a field K with maximal ideals
m1, . . . ,mr. If Oi ⊈ Oj for all i ̸= j, then the multi-residue map

R := O1 ∩ · · · ∩ Or → O1/m1 × · · · × Or/mr

is surjective: given xi ∈ Oi for all i, there exists x ∈ R with x− xi ∈ mi for all i.

Proof. Denote pi = R ∩ mi. It is a prime ideal of R and we denote by Rpi the
localisation of R at pi.

• Claim 1. We have Rpi = Oi.

Proof of claim 1. Clearly Rpi ⊂ Oi since R \ pi ⊂ O×
i . Now, take a ∈ Oi. For all j

such that a ∈ Oj, denote αj the residue class of a in kj = Oj/mj. Let p be a prime
such that p > char(kj) and αj not a primitive pth-root of unity in kj for all such j.
Define b = 1 + a+ · · ·+ ap−1. Let us show that b−1, ab−1 ∈ Oj for all j:

◦ If a ∈ Oj and αj = 1, then b̄ = p̄ ̸= 0 ∈ kj so b ∈ O×
j and b−1, ab−1 ∈ Oj.

◦ If a ∈ Oj and αj ̸= 1, then b̄ = (1− αp
j )/(1− αj) ̸= 0 and again b−1, ab−1 ∈ Oj.

◦ If a /∈ Oj, then a−1 ∈ mj and c := 1+a−1+ · · ·+a−(p−1) ∈ O×
j . From the equality

b−1 = a−(p−1)c−1, we deduce again b−1, ab−1 ∈ Oj.
Finally, it follows that b−1, ab−1 ∈ R. As b ∈ Oi, we have b−1 /∈ mi ∩ R = pi and

we get a = ab−1/b−1 ∈ Rpi as required.

• Claim 2. The prime ideals p1, . . . , pr are exactly the maximal ideals of R.

Proof of claim 2. Note first that all pi’s are maximal ideals of R. Indeed, let pi ⊂ b
with b ⊂ R maximal. Since mi is the unique maximal ideal of Oi, we must have
b ⊂ mi, hence b = R ∩ mi = pi. Now let m be a maximal ideal of R and assume for
a contradiction that m ̸= pi for all i. Then for all i, there exists mi ∈ m and pi ∈ pi
such that mi + pi = 1. We get

(2.2)
∏

pi =
∏

(1−mi) = 1−m

for some m ∈ m. Now, observe that

R× =
⋃

O×
i = R \ {p1 ∪ · · · ∪ pr}

As m ⊂ R \ R×, we get m ∈ pi for some i. Together with (2.2), this gives 1 ∈ pi, a
contradiction.

We can now finish the proof of the approximation theorem. Note first that pi ⊈ pj for
all i ̸= j since otherwise Oj = Rpj would be contained in Oi = Rpi . By maximality,
we get pi + pj = R for all i ̸= j. Thus, the Chinese Remainder Theorem ensures that
the map

R → R/p1 × · · ·R/pr

is surjective. We conclude thanks to the isomorphisms R/pi ≃ Rpi/piRpi ≃ Oi/mi.
□
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3. The fundamental inequality

Let v be a valuation on a field K and L/K some field extension. We would like to
have a control on the number of extensions of v to L.

Recall first that if w extends v from K to L, then Ov = Ow ∩K and mv = mw ∩K.
In particular :

• There is an embedding of residue fields kv ⊂ kw.
• There is an embedding of ordered abelian groups Γv ⊂ Γw.

Definition 3.1. Let (K, v) ⊂ (L,w) be an extension of valued fields. The integer

e = e(w/v) := [Γw : Γv]

is the ramification index of the extension. The integer

f = f(w/v) := [kw : kv]

is the residue degree or inertia degree of the extension. If e = f = 1, we say that the
extension is immediate.

We allow e and f to be infinite. Notice that the ramification index and residual degree
are multiplicative: if (K1, v1) ⊂ (K2, v2) ⊂ (K3, v3) are valued fields extension, then
we have

e(v3/v1) = e(v3/v2)e(v2/v1) and f(v3/v1) = f(v3/v2)f(v2/v1).

This section is dedicated to give the main lines of the proof of the following result.

Theorem 3.2 (Fundamental inequality). Let L/K be a finite extension. Any valua-
tion v on K admits a finite number of extensions w1, . . . , wr to L and we have

r∑
i=1

e(wi/v)f(wi/v) ≤ [L : K].

The proof in the separable discrete rank one case is elementary and will be given in
Section 3.3. The inequality in the general case is a deeper result whose proof requires
more sophisticated Galois theory. We will only sketch the main steps of the proofs.

Let us first have a look at a simple example which already illustrates various situa-
tions.

3.1. An example. We will compute all extensions w of the p-adic valuation vp from

Q to the quadratic extension Q(
√
2). Denote α =

√
2.

• Suppose p = 2. Then w(α2) = v2(2) = 1 which forces w(α) = 1/2. For a, b ∈ Q,
this forces

w(a+ bα) = min

(
v3(a), v3(b) +

1

2

)
,

which determines w uniquely. We get Γw = 1
2
Z and f(w/v2) = 1. Since w(α) > 0,

one has ᾱ = 0. Thus kw = F2 and e(w/v2) = 2.



12 WEIMANN AND ROÉ

• Suppose p = 3. Then w(α2) = v3(2) = 0 so that w(α) = 0 and e(w/v3) = 1. We
have ᾱ2 = 2̄ ∈ F3. Since 2 is not a square mod 3, we get f(w/v3) = [F3[ᾱ] : F3] = 2.
Again, the extension w is unique. For a, b ∈ Q, it is given by

w(a+ bα) = min(v3(a), v3(b)).

Indeed we have w(a + bα) ≥ min(w(a), w(bα)) = min(v3(a), v3(b)). Suppose that
strict inequality holds. Then v3(a) = v3(b) and

w(a+ bα) > w(a) =⇒ w (1 + cα) > 0

where c := b/a ∈ Ov3 = Z(3) by assumption. This would lead to 1̄ + c̄ᾱ = 0, hence
ᾱ ∈ F3, a contradiction.

• Suppose p = 7. Then again w(α) = 0 and e(w/vp) = 1. However, ᾱ2 − 2̄ = 0 has
now two solutions 3̄, 4̄ ∈ F7 leading to two distinct extensions w1, w2 of v. Namely,
the choice ᾱ = 3̄ imposes w1(α− 3) > 0 and w1(α− 4) = 0 from which it follows that

w1(α− 3) = w1((α− 3)(α− 4)) = w1(7(α + 2)) = 1 + w1(α + 2).

Since α + 2 = α − 3 + 5 and w1(α − 3) > w1(5) = v7(5) = 0, we get w1(α + 2) = 0.
Hence, w1(α− 3) = 1. For a, b ∈ Q, we may write a+ bα = a+ 3b+ b(α− 3) and we
get finally

w1(a+ bα) = min(v7(a+ 3b), v7(b) + 1).

(we can exclude strict inequality > by a similar argument as above). In the same
way, we get

w2(a+ bα) = min(v7(a+ 4b), v7(b) + 1)

Hence there are exactly two extensions of v7 to Q(α), and they both satisfy e(wi/v7) =
1 and f(wi/v7) = 1. We check moreover that

w1(a− bα) = min(v7(a− 3b), v7(b) + 1) = min(v7(a+ 4b), v7(b) + 1) = w2(a+ bα)

from which it follows that the valuation rings Ow1 and Ow2 are conjugated under the
Galois group of Q(α) over Q.

• For a general p ̸= 2, the situation will be either analoguous to p = 3 (this is when 2
is not a square mod p, that is 2 ̸= ±1 mod 8), or to p = 7 (this is when 2 is a square
mod p, that is 2 = ±1 mod 8).

3.2. The weak inequality.

Theorem 3.3 (Fundamental inequality - weak form). Let (K, v) ⊂ (L,w) be a valued
field extension of finite degree. Then

e(w/v)f(w/v) ≤ [L : K].

Proof. Let ᾱ1, . . . , ᾱf ∈ kw be kv-linearly independent and let w(π1), . . . , w(πe) be
representatives of distinct cosets of Γw/Γv. We need to show that the elements αiπj ∈
L are K-linearly independent. Suppose on the contrary that there exists cij ∈ K not
all zero such that

z :=
∑
i,j

cijαiπj = 0.
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Note that w(αi) = 0 by hypothesis. Let (I, J) such that w(cIJπJ) = mini,j w(cijπj).
If j ̸= J , then w(cIJπJ) < w(cijπj) since equality would lead to w(πJ) − w(πj) ∈ Γv

contradicting our assumption. Hence, dividing z by cIJπJ , we get a sum
∑

i,j uijαi

where uij ∈ mw if j ̸= J while uiJ ∈ Ow and uIJ ∈ O×
w . Reducing modulo mw, we get

a non trivial relation
∑

i ūi,J ᾱi = 0, a contradiction. □

Corollary 3.4. Let (K, v) ⊂ (L,w) be an algebraic extension of valued fields. Then:

• kw is an algebraic extension of kv.
• Γw/Γv is torsion. In particular rk(Γv) = rk(Γw).

Proof. Let α ∈ L and let L′ = K(α) and w′ = w|L′ . As L′/K is finite, Theorem 3.3
ensures that ᾱ ∈ kw′ is algebraic over kv and that Γw′/Γv is finite. Hence, w′(α) + Γv

is torsion. For the rank equality, the group Γw/Γv being torsion, the map ∆ 7→ ∆∩Γv

is a bijection between the set of convex subgroups of Γw and of Γv. □

Corollary 3.5. Suppose that L/K is a purely inseparable extension of fields. Then
any valuation on K admits a unique extension to L.

Proof. Recall that L/K is purely inseparable if char(K) = p > 0 and if for all x ∈ L,
there exists some n ∈ N such that xpn ∈ K. Let v be a valuation on K and let w
be an extension of v to L (which exists by Corollary 2.4). Since Γw/Γv is torsion
by Corollary 3.4, we have an embedding ϕ : Γw ↪→ Γv ⊗Z Q of torsion-free groups.
Let x ∈ L and n ∈ N such that xpn ∈ K. We get pnw(x) = v(xpn) ∈ Γv and
ϕ(w(x)) = v(x)⊗ 1/pn determines w(x) uniquely. □

3.3. The separable discrete rank one case. In such a case, we have a stronger
result: the fundamental inequality is in fact an equality. The proof is elementary,
mainly based on the Approximation Theorem.

Theorem 3.6. Let O ⊂ K be a valuation ring with value group Γ ≃ Z and let L/K a
finite separable extension. Then there exists a finite number O1, . . . ,Or of extensions
of O to L and we have

r∑
i=1

eifi = [L : K],

where ei = e(Oi/O) and fi = f(Oi/O).

Proof. Denote m the maximal ideal of O and k its residue field. Let O1, . . . ,Or be
some extensions of O, and define in the same way Γi, mi and ki for the valuation ring
Oi. As we are in the discrete rank one case, there exists π ∈ O such that m = πO.
Denote R = O1 ∩ · · · ∩ Or.

• Claim 1. The ring Oi/πOi is a k-vector space of dimension eifi.
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Proof. Since valuation groups are torsion free, Theorem 3.3 guarantees that Γi ≃ Z
and Γi/Γ is cyclic of order ei. Thus, there exists πi ∈ Oi such that mi = πiOi.
Moreover,

πiOi ⊋ π2
iOi ⊋ · · · ⊋ πei

i Oi = πOi.

For all 1 ≤ j < ei, we have a group isomorphism

πj
iOi/π

j+1
i Oi ≃ Oi/πiOi = ki.

Hence, Oi/πOi is a ki-vector space of dimension ei. As [ki : k] = fi (which is finite
by Theorem 3.3), the claim follows.

• Claim 2. We have R/πR ≃
∏

iOi/πOi as k-vector spaces.

Proof. Theorem 2.10 ensures that the multi-residue map ϕ : R →
∏

i Oi/πOi is
surjective. We have x ∈ ker(ϕ) if and only if x ∈ πOi for all i. This means π−1x ∈
O1 ∩ · · · ∩ Or = R, that is x ∈ πR. The claim follows.

• Claim 3. We have dimk R/πR ≤ [L : K].

Proof. We know that R/πR is a k-vector space of dimension n :=
∑

eifi. Let
x1, . . . , xn ∈ R such that x̄1, . . . , x̄n is a k-basis of R/πR. It’s sufficient to show that
x1, . . . , xn are K-linearly independent. Suppose on the contrary that

∑
cixi = 0 with

ci ∈ K not all zero. Up to multiplying all ci’s by a suitable power of π, we may
suppose that ci ∈ O for all i, with moreover ci ∈ O×

i for at least one index i. This
would lead to a non trivial relation

∑
c̄ix̄i = 0 in R/πR, a contradiction.

These three claims ensure that n :=
∑r

i=1 eifi ≤ [L : K] (notice that separability
assumption has not been used yet). In particular, there exists a finite number of
extensions of O to L. Assume that these extensions are O1, . . . ,Or. Then R is the
integral closure of O in L by Corollary 2.8. As L/K is separable and O is a principal
ideal domain, R is a thus a free O-module of rank [L : K] (see e.g. Zariski-Samuel,
Corollary 2 p. 265). As moreover O is a local ring, Nakayama’s Lemma ensures that
x1, . . . , xn as defined above is an O-basis of R. Hence, n = [L : K]. □

3.4. Conjugation theorem and Galois extensions. The proof of the fundamental
inequality for an arbitrary finite extension L/K is much more involved. A key step
is to show that if L/K is normal, then two extensions of O are conjugated.

Theorem 3.7 (Conjugation theorem). Suppose that L/K is a normal extension of
fields, O is a valuation ring of K and O′,O′′ are valuations rings of L lying above O.
Then there exists σ ∈ Aut(L/K) with σ(O′) = O′′. Moreover :

• The corresponding extensions w′ and w′′ of v to L satisfy w′′ = w′ ◦ σ
• The residue fields kw′ and kw′′ are kv-isomorphic normal extensions of kv.
• We have equality e(w′/v) = e(w′′/v) and f(w′/v) = f(w′′/v).

In particular, if L/K is a finite extension, its normal closure N is a finite extension
of K and the Conjugation theorem implies that any valuation v on K admits only a
finite number of extensions w1, . . . , wr to L.

We now consider the case of a Galois extension, which is the next key step toward
the proof of Theorem 3.2.
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Theorem 3.8. Suppose that L/K is a finite Galois extension and let v be a valua-
tion on K. Then v admits only a finite number of extensions w1, . . . , wr to L. All
valuations wi have same e(wi/v) = e and same f(wi/v) = f . Moreover,

[L : K] = refd

where d = 1 if char(kv) = 0 or char(kv) = p > 0 and {0 ≤ a ≤ v(p)} is finite, or d is
some power of p otherwise.

The integer d is called the defect of the Galois extension L/K. If d = 1, the extension
is said to be defectless.

Proof. (Main ideas.) Let O∗ ⊂ L be a fixed extension of O = Ov to L. Consider the
subgroup

G = {σ ∈ Gal(L/K) , σ(O∗) = O∗}.
Denote K ′ ⊂ L the subfield fixed by G and denote O′ = O∗∩K ′. Since L/K ′ is Galois
with Galois group G, then O∗ is the unique extension of O′ to L by the Conjugation
theorem. More importantly, it can be shown - and these are the key points, that we
will not prove here - that :

(1) (K ′,O′) is an immediate extension of (K,O).
(2) [L : K ′] = d e(L/K ′)f(L/K ′) with d as in Theorem 3.8.

Theorem 3.8 then follows : we can write

Gal(L/K) =
r⋃

i=1

σiG

where r = [K ′ : K] and say σ1 = id. The Conjugation Theorem ensures that the
extensions ofO to L are precisely σ1(O∗) = O∗, . . . , σr(O∗), all with same ramification
index e = e(L/K) and same residual degree f = f(L/K). By multiplicativity of the
ramification index and by (1), we get

e(L/K) = e(L/K ′)e(K ′/K) = e(L/K ′)

and the same relation holds for f(L/K). Using (2), we get finally

ref = [K ′ : K]e(L/K ′)f(L/K ′) = [K ′ : K][L : K ′]/d = [L : K]/d.

□

Remark 3.9. The proof of point (1) uses mainly the approximation theorem. Point
(2) is more tricky as it involves Henselian fields and more sophisticated Galois theory
(inertia groups, ramification groups, etc).

Example 3.10. The following example intends to illustrate the subtility between the
cases d(w/v) = 1 and d(w/v) > 1.

• Let (K, v) = (Fp(t), vt) and let g = xp − x − t−1 ∈ K[x]. Denote α ∈ K̄ a root of
g and let L = K(α]. Let w be some extension of v to L. Then αp − α = t−1 forces
w(α) = −1/p. Since Γv = Z, we deduce easily that

(3.1) w

(
p−1∑
i=0

ciα
i

)
= min

i

(
v(ci)−

i

p

)
,
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so w is unique and e(w/v) = p. By Theorem 3.3, we get f(w/v) = 1 and [L : K] = p
(in particular g is irreducible). The defect is d(w/v) = 1 re is equality

∑
eifi = [L :

K] as predicted by Theorem 3.2 (separable discrete rank one case).

• Take the same polynomial g, but now considered with coefficients in the the field of
Puiseux series

K =
⋃
n≥1

Fp((t
1/n))

(still with v = vt). We claim that g is still irreducible. To see this, we remark that

α = t−1/p + t−1/p2 + t−1/p3 + · · ·
is a root of g such that α /∈ K. Moreover, the other roots of g are α+1, . . . , α+p−1.
Thus, if h ∈ K[x] is a divisor of g of degree 1 ≤ d < p, then

h = xd − (dα + c)xd−1 + · · ·
with c ∈ K and d ̸= 0. We would get α ∈ K, a contradiction. Thus g is irreducible
over K and L/K is Galois of degree p.

We still have w(α) = −1/p, but as Γv = Q and kv is algebraically closed, we have
now e(w/v) = 1, f(w/v) = 1 (Corollary 3.4). Moreover, one can show that there is a
unique extension w of v to L (this is not trivial since w is not anymore characterized
by (3.1)). This is an example for which the defect is d(w/v) = p > 1.

3.5. Proof of the fundamental inequality (sketch). Let L/K be a finite exten-
sion. Let O be a valuation ring of K and let O1, . . . ,Or be the extensions of O to L.
We want to show that

r∑
i=1

e(Oi/O)f(Oi/O) ≤ [L : K].

Up to replace L by the separable closure of K in L, we may assume L/K separable
thanks to Corollary 3.5. Consider then the Galois closure N/K of L/K. Then O
admits say s extensions to N and Theorem 3.8 gives

(3.2) [N : K] = sefd

with the obvious notations. Let O1, . . . ,Or be the extensions of O to L and let
Oi1, . . . ,Oisi be the extensions of Oi to N . As N/L is also Galois, they have same
ramification index ei and residue degree fi and Theorem 3.8 applied in L/N gives

(3.3) [N : L] = sieifidi

for all i = 1, . . . , r, for some defect di associated to the extension of Oi to N . It can
be shown that di divides d for all i. Moreover, s =

∑r
i=1 si while e(Oi/O) = e/ei and

f(Oi/O) = f/fi. Hence, (3.2) and (3.3) lead to

[N : K] = [N : L]
r∑

i=1

e(Oi/O)f(Oi/O)
d

di
.

Dividing both terms by [N : L] and using that d/di ≥ 1, we get the result. □
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4. Transcendental extensions

Let us start by considering the simplest case of a purely transcendental extension
of degree 1.

4.1. Extension to a rational function field. Let us describe all possible extensions
of a valuation v on a fieldK to the rational function fieldK(t). Notice that we already
solved the case where v is trivial on K, see Proposition 1.11.

Theorem 4.1. Let (K, v) be a valued field with value group Γ and consider the rational
function field K(t). Let Λ be an ordered abelian group strictly containing Γ and let
a ∈ K, δ ∈ Λ. We define

w

(
n∑

i=0

ci(t− a)i

)
:= min{v(ci) + iδ, i = 0, . . . , n}

that we extend to K(t) as w(g/h) = w(g) − w(h). Then w defines a valuation on
K(t) with value group Γ + δZ ⊂ Λ.

Proof. Consider first f, g ∈ k[t]. We easily check that w(f + g) ≥ min{w(f), w(g)}.
Let us prove w(fg) = w(f) + w(g). Write f =

∑
ai(t − a)i and g =

∑
bj(t − a)j.

Thus
fg =

∑
ck(t− a)k, ck =

∑
i+j=k

aibj

For i+ j = k, we have

v(aibj) + kδ = v(ai) + iδ + v(aj) + jδ ≥ w(f) + w(g).

Thus v(ck) + kδ ≥ w(f) + w(g) for all k and we get w(fg) ≥ w(f) + w(g). For the
opposite inequality, let

i0 = min{i | v(ai) + iδ = w(f)} and j0 = min{j | v(aj) + jδ = w(g)}
and denote k0 = i0 + j0. We may write

(4.1) ck0 = ai0bj0 +
∑

i+j=k0, i<i0

aibj +
∑

i+j=k0, i>i0

aibj.

Let i, j be such that i+ j = k0.
• If i < i0, we have v(ai) + iδ > w(f) by definition of i0. Since v(bj) + jδ ≥ w(g),

we deduce

(4.2) v(aibj) + k0δ = v(ai) + iδ + v(bj) + jδ > w(f) + w(g).

• If i > i0 then j0 < j and (4.2) still holds by symmetry.
• If i = i0, then j = j0 and

(4.3) v(ai0bj0) + k0δ = v(ai0) + i0δ + v(bj0) + j0δ = w(f) + w(g).

Combining (4.1), (4.2) and (4.3) we get v(ck0) + k0δ = w(f) + w(g). It follows that
w(fg) ≥ w(f) + w(g) leading to the desired equality w(fg) = w(f) + w(g) in K[t].

Suppose now f, g ∈ K(t). Note first that w is well-defined: if f1/f2 = g1/g2, then
f1g2 = f2g1 so that w(f1) − w(g1) = w(f2) − w(g2) by what we just proved. By
reducing f and g to the same denominator, it’s then straightforward to check that
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the relations w(f + g) ≥ min{w(f), w(g)} and w(fg) = w(f) + w(g) still hold in
K(t). □

If we let a = 0, δ = 0 in the above theorem, then we get the so-called Gauss valuation
defined on K[t] by

w
(∑

ait
i
)
:= min

i
{v(ai)}

and extended to K(t) by w(f/g) = w(f)− w(g).

Proposition 4.2. The Gauss valuation is the unique extension of v to K(t) for which
w(t) = 0 and t̄ is transcendental over kv. It satisfies Γw = Γ and kw = kv(t̄).

Proof. Uniqueness : Let f =
∑

ait
i non-zero. Let v(ak) = mini v(ai) and write

f = akg with g =
∑

bit
i ∈ K[t], bi = ai/ak. As w(ai/ak) ≥ 0 and w(t) = 0, we

deduce that w(g) ≥ 0. Moreover, ḡ =
∑

b̄it̄
i is non zero since t̄ is transcendental over

kv and b̄k = 1̄ ̸= 0. Thus g ∈ O×
w , that is w(g) = 0. We get w(f) = v(ak) = min v(ai),

as required.
Existence : Let us show that w(

∑
ait

i) := mini{v(ai)} satisfies the desired prop-
erties. We already know that it is a valuation, and equality w(t) = 0 and Γw = Γ are
clear. To show that t̄ ∈ kw is transcendental over kv, consider a relation

∑
āit̄

i = 0
for some ai ∈ Ov. Then w(

∑
ait

i) > 0 which implies v(ai) > 0 for all i, that is āi = 0
as required. There remains to show that kw = kv(t̄). The inclusion kv(t̄) ⊂ kw is
clear. Let h = f1/f2 ∈ O×

w , with fi ∈ K[t]. As above, we may write fi = cigi for
some ci ∈ K× and gi ∈ O×

w . Therefore, h = cg1/g2 with c = c1/c2 ∈ K×. As h, g1, g2
belong to O×

w , so does c. It follows that h̄ = cg1/g2 ∈ kv(t̄). □

Proposition 4.3. Let (K, v) be a valued field with value group Γ ⊂ Λ. If δ ∈ Λ \ {0}
and Γ ∩ Zδ = {0}, then there exists a unique extension of v to K(t) which satisfies
w(t) = δ. It satisfies kw = kv and Γw = Γ⊕ Zδ (with the ordering induced by Λ).

Proof. Existence follows from Theorem 4.1. For uniqueness, let f =
∑

ait
i. Then

w(f) = w(
∑

ait
i) ≥ min{w(aiti)} = min{v(ai) + iδ}.

If equality does not hold, there would exist i ̸= j such that ai ̸= 0, aj ̸= 0 and
v(ai) + iδ = v(aj) + jδ, contradicting that Γ ∩ Zδ = {0}. Obviously, we have Γw =
Γ⊕Zδ. There remains to show that kv = kw. Since there is a unique indexm such that
w(f) = w(amt

m), we deduce that f = amt
m(1 + u) with u ∈ mw. If h = f/g ∈ K(t),

there thus exists c ∈ K×, r ∈ Z and u, u′ ∈ mw such that

h = ctr
1 + u

1 + u′ .

Hence, if h ∈ O×
w , we must have w(cXr) = 0, that is v(c)+rδ = 0. Since Γ∩Zδ = {0},

this forces v(c) = 0 and r = 0. So c ∈ O×
v . As ū = ū′ = 0, we get h̄ = c̄ ∈ kv. □

Example 4.4. Consider K = k(s) equipped with the s-adic valuation. Let L = k(s, t)
with two independent variables s, t. We have an isomorphism L ≃ K(t). Previous
results ensure that :



INTRODUCTION TO VALUED FIELDS 19

• There is a unique valuation w on L trivial on k which satisfies w(s) = 1 and
w(t) =

√
2. It is defined on k[s, t] by

w(
∑

aijs
itj) = min{i+ j

√
2, aij ̸= 0}.

The value group is Z +
√
2Z ⊂ (R,+) and w is non-discrete of rank 1. The

residue field is k.
• There is a unique valuation w on L with value group Z2

lex such that w(s) =
(1, 0) and w(t) = (0, 1). It is defined on k[s, t] by

w(
∑

aijs
itj) = min{(i, j), aij ̸= 0}.

The residue field is again k, but v is now discrete of rank 2.

Notice that we could have provided similar examples by considering L = Q(t) with
Q equipped with the p-adic valuation. Such a valuation would have residue field Fp.

4.2. The dimension inequality. Let us now consider a field extension L/K of
arbitrary transcendental degree.

Theorem 4.5. Let (K, v) ⊂ (L,w) be a valued field extension. Let x̄1, . . . , x̄r ∈ kw
be algebraically independent over kv and let w(y1), . . . , w(ys) ∈ Γw with Z-linearly
independent classes in Γw/Γv. Then x1, . . . , xr, y1, . . . , ys ∈ L are algebraically in-
dependent over K. Moreover, the restriction v′ of w to K(x1, . . . , xr, y1, . . . , ys) has
residue field and value group

kv′ = kv(x̄1, . . . , x̄r) and Γv′ = Γv ⊕ w(y1)Z⊕ · · ·w(ys)Z.

Proof. (sketch) The case r+s = 1 is a consequence of Corollary 3.4 for the first point,
together with Proposition 5.2 and 5.3 for the second point. Then, the proof proceeds
by induction on r + s. □

Definition 4.6. The rational rank of an abelian group Γ is the dimension of the
Q-vector space Γ := Γ⊗Z Q. We denote it by rr(Γ).

In other words, rr(Γ) is the maximal number (possibly infinite) of elements of Γ which
are Z-linearly independent. If ∆ ⊂ Γ is a subgroup of an ordered abelian group Γ,
then one can show by induction

rk(Γ) ≤ rk(∆) + rr(Γ/∆).

In particular, considering ∆ = {0}, we get the inequality rk(Γ) ≤ rr(Γ). For instance,
Γ = Z+

√
2 has rank 1 and rational rank 2.

By combining Theorem 4.5 together with Corollary 3.4, we get the following result :

Corollary 4.7 (Dimension inequality – Abhyankar). Let (K, v) ⊂ (L,w) be an ex-
tension of valued fields. Then,

tr.deg(kw/kv) + rr(Γw/Γv) ≤ tr.deg(L/K)

Corollary 4.8. Let L/K be a field extension and let O be a valuation ring of K. If
there exists extensions O1 ⊊ · · · ⊊ On of O to L, then tr.deg(L/K) ≥ n− 1.
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Proof. We have O = Ov and O1 = Ow for some valuations v of K and w of L. Let
yi ∈ Oi \ Oi−1 for all i = 2, . . . , n. By the previous corollary, it’s sufficient to show
that w(y2), . . . , w(yn) generate Z-linearly independent cosets in Γw/Γv. Suppose on
the contrary that there exist ci ∈ Z not all zero and a ∈ K× such that

c2w(y2) + · · ·+ cnw(yn) = w(a).

Thus b = a−1yc22 · · · ycnn ∈ O×
1 ⊂ O×

n . Since yi /∈ Oi−1, we get y−1
i ∈ Oi−1 ⊂ Oi

so that yi ∈ O×
i ⊂ O×

n for all i. Hence a = b−1yc22 · · · ycnn ∈ O×
n . Since a ∈ K,

we deduce that a ∈ O×. Let m be the maximal index such that cm is non zero.
Then ycmm = bay−c2

2 · · · y−cm−1

m−1 ∈ O×
m−1. Since Om−1 is integrally closed, this forces

ym ∈ Om−1, a contradiction.
□

5. Topology and completion

The main reference for this section is [10, Sections 2.3 and 2.4]

5.1. Topology induced by a valuation. To any valuation v : K → Γ ∪ {∞}
with Γ ⊂ R (i.e., of rank 1) one may associate a non archimedean absolute value
| · |v : K → R defined by |x|v = exp(−v(x)).

Theorem 5.1. Let (K, | · |) be a field with an absolute value. Then, there is a field K̂

which is complete with respect to | · | and an embedding i : K ↪→ K̂ which preserves

| · |, such that K is dense in K̂. Moreover, if (K̂0, i0) is another such pair, then

there exists a unique continuous isomorphism φ : K̂ → K̂0 preserving | · | such that
i0 = i ◦ φ.

K̂ is called the completion of K with respect to | · |.

Proof. The existence of a completion and the density of i(K) in K̂ can be proved by
the standard constructive method of taking Cauchy sequences modulo the ideal of
sequences converging to zero. Uniqueness is easily proved by topological arguments
using the density of i(K). □

Example 5.2 (Completions of Q). The field Q admits a single archimedean absolute
value (up to equivalence) namely the usual one: |x| = max{x,−x} (see [10, 1.2]). Of
course, its completion with respect to the archimedean absolute value is R.
All other absolute values on Q are non-archimedean and derive from p-adic valua-

tions where p ∈ Z is a prime. The completion of Q with respect to |x|p = exp(−vp(x))
is called Qp. An element x of Qp can be written uniquely as a convergent series

z =
∑
i≥m

aip
i = lim

n→∞

n∑
i=m

aip
i

where m ∈ vp(z) ∈ Z, and ai ∈ {0, 1, . . . , p− 1} with am ̸= 0.

Example 5.3 (Completions with respect to a discrete valuation). More generally, if

v is a discrete valuation of rank 1, and π is a uniformizer, then every element z ∈ K̂×
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can be written uniquely as a convergent series

z =
∑
i≥m

aiπ
i = lim

n→∞

n∑
i=m

aiπ
i

where m = v(x), am ̸= 0, and all coefficients ai are taken from a set R ⊆ Ov of
representatives of the residue classes in the field kv.

The p-adic valuation of Q is a particular case of this; another example is given by
the t-adic valuation on k(t) where k is some field, vt(f) = ordt(f), with uniformizer

t. Then the completion k̂(t) is (isomorphic to) the field k((t)) of Laurent power series
of the form

f =
∑
i≥m

ait
i

where m ∈ vt(f) ∈ Z, and ai ∈ k.
In many aspects, in particular for local-to-global problems, the absolute value | · |v∞

on k(t) attached to the valuation − deg plays an analoguous role to the archimedean
absolute value on Q.

Valuations of rank higher than 1, which do not define absolute values, can be used
nevertheless to define a topology. Let v : K → Γ ∪ {∞} be an arbitrary valuation,
and define, for each γ ∈ Γ and each x ∈ K,

Uγ(x) = {y ∈ K|v(y − x) > γ}.
The family of sets Uγ(x) for all γ and all x form the basis of a topology and the sets
Uγ(x) for x fixed are then a basis of neighborhoods of x (called open balls centered
at x) [10, Section 2.3]. Once a topology is given one may perform completions much
in the same way as for absolute values.

Example 5.4. Fix a prime p ∈ Z and consider the following rank 2 valuation on
K = Q(t). For f ∈ K ⊂ Q((t)) write f =

∑
ait

i and let v(f) = (vt(f), vp(avt(f))) ∈
Z2

lex. It is not hard to see that v is indeed a valuation.
A sequence fn in K converges to 0 with respect to v if and only if for every (a, b) ∈

Z2 there exists n0 such that v(fn) >lex (a, b) for all n > n0. This is equivalent to the
statement that for every a ∈ Z there exists n0 such that vt(fn) > a for all n > n0. So
the topologies induced by v and by vt are equal; the following section deals with this
issue in general.

5.2. Dependent or composite valuations.

Definition 5.5. Two valuations v1, v2 on a field K are dependent if their valuation
rings Ov1, Ov2 are contained in a common proper subring of K, i.e., if Ov1Ov2 ̸= K.
v2 is called a coarsening of v1 if Ov1 ⊂ Ov2.

Theorem 5.6. Given a valuation v on a field K, let O(v) be the set of overrings of
Ov, i.e.,

O(v) = {O′ ⊆ K subring | Ov ⊆ O′ ⊆ K}.
Then:

1. Every O′ ∈ O(v) is a valuation ring with maximal ideal m′ ⊆ mv and m′ is
prime in Ov.



22 WEIMANN AND ROÉ

2. The map O(v) → SpecOv given by O′ 7→ m′ is an order-reversing bijection,
with inverse map given by localization m′ 7→ (Ov)m′.

3. Both O(v) and SpecOv are totally ordered sets, in bijection with the set of
convex subgroups of v(K×).

Proof. (1) Since

x /∈ O′ =⇒ x /∈ Ov ⇐⇒ x−1 ∈ m ⊂ O′,

O′ is a valuation ring, and therefore

x ∈ m′ ⇐⇒ x−1 /∈ O′ =⇒ x−1 /∈ Ov ⇐⇒ x ∈ mv.

The fact that m′ is prime in Ov also follows from x ∈ m′ ⇔ x−1 /∈ O′.
(2) That the map is order-reversing is clear, and that localization at any prime

m′ of Ov gives an overring whose maximal ideal is m′ is clear too. Using the
property x ∈ m′ ⇔ x−1 /∈ O′ again it is clear that O′ = (Ov)m′ is the only
overring with maximal ideal m′, and bijectivity follows.

(3) The value group of every O′ ∈ O(v) is by 1.6 equal to K×/O′×, which is a
quotient of K×/O×

v . The kernel of this quotient is the convex subgroup that
corresponds to O′ by this bijection. Conversely, if ∆ is a convex subgroup of
v(K×), the corresponding prime ideal is

p∆ = {x ∈ K , v(x) > δ, ∀ δ ∈ ∆}.
Since convex subgroups are totally ordered by inclusion, and all involved bi-
jections preserve ordering, O(v) and SpecOv are also totally ordered sets.

□

Note then that a valuation ring has rank 1 if and only if it is maximal, i.e. has no
non-trivial overrings. In particular, any distinct valuation rings O1 and O2 of rank 1
are necessarily independent.

Whereas the value group of the larger valuation ring is a quotient by the corre-
sponding convex subgroup, the convex subgroup itself corresponds to a valuation on
its residue field. One says that v is composite with these two valuations.

Corollary 5.7. Dependence of valuations is an equivalence relation.

Proof. If v1, v2 are dependent and v2, v3 are dependent, thenOv1Ov2 ̸= K andOv2Ov3 ̸=
K are overrings of Ov2 , so one must be included in the other, say Ov1Ov2 ⊆ Ov2Ov3 ̸=
K. But then Ov1 and Ov3 are contained in a common proper subring of K, namely
Ov2Ov3 .

□

Theorem 5.8. Two nontrivial valuations are dependent if and only if they define
the same topology on K.

Proof. If Ov′ is an overring of Ov then the value group of v′ is a quotient Γv′ = Γv/∆,
and for every x ∈ K, v′(x) = v(x) + ∆ ∈ Γv/∆. Then, the key point is that for
every γ ∈ Γ there exist γ′ ∈ Γ such that γ′ + ∆ > γ + ∆, because this guarantees
an inclusion of open balls U ′

γ′+∆(a) ⊂ Uγ(a) and also Uγ′(a) ⊂ U ′
γ′+∆(a). So the two

bases of neighborhoods are cofinal.
For the converse, if the topologies induced by v and v′ are equivalent one considers

the ring O = {x/y|x ∈ Ov1 , y ∈ Ov1 \ mv2}, which is easily seen to contain Ov and
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Ov′ . Using the equivalence of the topologies, it follows that there exists a ∈ K× such
that amv ⊂ mv′ , which can be used to show that O is a proper subring of K. □

6. Henselian fields

6.1. Hensel’s lemma for complete valued fields.

Theorem 6.1. Let (K, v) be complete valued field with rank(v) = 1. Given a ∈ Ov

and f ∈ Ov[t] such that v(f(a)) > 2v(f ′(a)) holds, there is some b ∈ Ov such that
f(b) = 0 and v(b− a) > v(f ′(a)).

The idea is that if f(a) is ‘close’ to zero then f(a− f(a)/f ′(a)) is even closer.

Proof. (Sketch) First one remarks that for every polynomial f(x) ∈ Ov[t] there exists
g(t, δ) ∈ Ov[t, δ] such that f(t + δ) = f(t) + f ′(t)δ + δ2g(t, δ). This is a simple
computation which does not require either rank 1 or completeness.

Then one applies Newton’s method.
Let ε = v(f(a)) − 2v(f ′(a)), which is positive by hypothesis, and define a1 =

a − f(a)/f ′(a), noting that f(a)/f ′(a) ∈ mv. The remark we just made shows then
that

f(a1) = f(a) + f ′(a)

(
− f(a)

f ′(a)

)
+ d

(
− f(a)

f ′(a)

)2

= d

(
− f(a)

f ′(a)

)2

for some d ∈ Ov. This gives v(f(a1)) ≥ 2v(f ′(a)) + 2ε and v(f ′(a1)) = v(f ′(a)).
Then one proceeds iteratively defining an+1 = an − f(an)/f

′(an), which is a Cauchy
sequence because v(an+1 − an) ≥ v(f ′(a)) + (n + 1)ε. Therefore b = lim an exists in
K, and since the value of f(an) grows indefinitely, the limit is a root of f . □

6.2. The Henselian property. We saw before that the topology induced by a valu-
ation depends only on its rank-1 coarsening, so the property of (K, v) being complete
also depends only on the rank-1 coarsening of v. It turns out that the conclusion in
Hensel’s lemma is a more fundamental property, and more suitable for the study of
valuations of rank greater than 1, than the completeness hypothesis.

Theorem 6.2 (Hensel’s Lemma). For a valued field (K, v), the following are equiv-
alent:

(1) For all f ∈ Ov[t], a ∈ Ov with v(f(a)) > 2v(f ′(a)), there exists some b ∈ Ov

satisfying f(b) = 0 and v(a− b) > v(f ′(a)).
(2) Simple roots lift: For each f ∈ Ov[t] and a ∈ Ov with f(a) = 0 and f ′(a) ̸= 0

in the residue field, there exists some b ∈ Ov such that f(b) = 0 and b = a
holds.

(3) Every polynomial of the form tn + tn−1 + an−2t
n−2 + · · ·+ a0 with ai ∈ mv for

0 ≤ i ≤ n− 2 has a zero in K.
(4) v extends uniquely to every finite (algebraic) extension of K.

Definition 6.3. (K, v) is called Henselian if it satisfies one (and hence any) of the
properties of Hensel’s lemma

In order to prove Hensel’s lemma in all generality, the following version of Gauss’s
Lemma will be useful:
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Lemma 6.4. Let (K, v) be any valued field and f ∈ Ov[t]. Then there exitst h1, . . . , hn ∈
Ov[t] irreducible in K[t] with

f = h1 . . . hn.

Proof. Let f = g1 . . . , gn be a factorization of f into irreducible factors in K[t].
Consider the Gauss extension ṽ of v to K(t), so that

ṽ
(∑

ait
i
)
= min{v(ai)}.

Let a be the coefficient of f of minimal valuation, so that ṽ(f) = v(a) and similarly
let bi be the coefficient of gi of minimal valuation. Then gi/bi ∈ Ov[t] has null Gauss
valuation, and one checks that h1 = ag1/b1, hi = gi/bi for i ≥ 2 gives a factorization
of f as desired. □

Proof of Theorem 6.2. (1)⇒(2): If f(a) = 0 and f ′(a) ̸= 0 then v(f(a)) > 0 =
2v(f ′(a)), so by (1), there exists some b ∈ Ov satisfying f(b) = 0 and v(a−b) >
0, therefore (2) holds.

(2)⇒(3): If f = tn+tn−1+an−2t
n−2+· · ·+a0 with ai ∈ mv, then f(t) = tn−1(t+1)

has the simple root −1, which by (2) means that f has a root in K.
(3)⇒(4), Sketch: Suppose there is a Galois extension N/K such that v has

more than one extension to N . Fix one of the extensions, w, and let G = {σ ∈
Gal(N/K)|σ(Ow) = Ow}. By Theorem 3.7, G is a proper subgroup of the
Galois group; let L ⊂ N be the fixed field of G, and let O1 = Ow,O2, . . . ,On

be the conjugates of O1 in N .
The idea is then to prove for any element β ∈

⋂
Oi ∩ L with β − 1 in the

maximal ideal of O1 and β in the maximal ideal of Oi for all i > 1 (which
exist by Weak Approximation), the minimal polynomial of β is of the form
given in (3).

□

Example 6.5. A complete field of rank greater than 1 need not be Henselian.
Consider the field L = k(s, t) equipped with the Z2

lex-valuation w from example 4.4
with w(s) = (1, 0) and w(t) = (0, 1). Its residue field is k and its completion is

L̂ = k(t)((s)).
Let f(x) = x2 − (1 + t). 1 is obviously a root of f̄(x) = x2 − 1 over the residue

field. However we claim that 1 cannot be lifted to a root in L̂. To see this it is
enough to show that w(a2 − (1 + t)) < (1, 0) for every a ∈ L, or equivalently, that
vs(a

2 − (1 + t)) ≤ 0 for every a ∈ L, which is clear if vx(a) ̸= 0, and follows from the
fact that 1 + t is not a square in k(t) when vx(a) = 0.-
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[5] M. dos Santos Barnabé, J. Novacoski, Valuations on K[x] approaching a fixed irreducible poly-
nomial, J. Algebra 592 (2022), 100–117.



INTRODUCTION TO VALUED FIELDS 25

[6] J.-D. Bauch, Computation of integral bases, J. Number Theory 165 (2016), 382—407.
[7] J.-D. Bauch, E. Nart, H. Stainsby, Complexity of the OM factorizations of polynomials over local
fields, LMS J. of Comp. and Math. 16 (2013), 139–171.

[8] D. Duval, Rational Puiseux expansions, Compositio Math. 70 (1989), no.2, 119–154.
[9] O. Endler, Valuation Theory, Universitex, Springer-Verlag, Berlin Heidelberg, 1972.
[10] A. J. Engler, A. Prestel, Valued fields, Springer, Berlin, 2005.
[11] J.v.z. Gathen, G. Jürgen, Modern Computer Algebra, Cambridge University Press, 2013.
[12] A. Jakhar, S. K. Khanduja, N. Sangwan, On factorization of polynomials in Henselian valued
fields, Comm. Alg. 46-7 (2018), 3205–3221.
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