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ABSTRACT
In this paper, we study the connection between theOM-factorization
of a polynomial and its cluster pictures, which is a representation
of the relative configuration of the roots. Our contribution is three-
fold, assuming that the residual characteristic zero or large enough:
(1) We provide and showcase an implementation of the OM al-
gorithms. (2) We make explicit and constructive the connection
between the valuative tree of a polynomial, the cluster picture of its
roots and the Berkovich skeleton of its roots. As such, we provide
a complexity result on the computation of cluster pictures. (3) We
elaborate on this connection to provide and showcase an algorithm
to compute cluster pictures based on the OM algorithms.
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1 INTRODUCTION
Let (𝐾, 𝑣𝐾 ) be a discrete rank-one valued field with henselization
𝐾ℎ . Given a separable irreducible polynomial 𝑔 ∈ 𝐾 [𝑥], the OM
algorithm computes an approximation of each irreducible factors
of 𝑔 in 𝐾ℎ [𝑥]. These factors are one-to-one with the extensions of
𝑣𝐾 to the field 𝐾 [𝑥]/(𝑔), and a crucial feature of the OM algorithm
is to approximate these valuations by some inductive valuations on
𝐾 [𝑥], which are some suitably increasing sequences of extended
valuations on 𝐾 [𝑥].

It turns out that there is an equivalent description of the involved
extended valuations on 𝐾 [𝑥] in the language of rigid analytic ge-
ometry, valuations corresponding to rigid diskoids [29, Thm 4.56].
Besides establishing a bridge between valuation theory and non
archimedean geometry, this reinterpretation gives a convenient
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way to recover the cluster pictures of a polynomial 𝑔 ∈ 𝐾 [𝑥] from
its OM-factorization when the ramification is tame. This is the main
topic of this paper. Cluster pictures have been introduced in [7] as
a convenient representation of the relative configuration set of the
roots of a polynomial to compute various arithmetic data attached
to hyperelliptic curves: semitable model, conductor, minimal dis-
criminant, Galois representation, Tamagawa number, root number,
reduction type, Kodaira type, . . . We refer to [6, 13] for an exten-
sive presentation of the applications of cluster pictures (see also
[13]). This reference has been followed by a SageMath package1.
Independently, a theoretical approach has been presented in [12].
However, no theoretical analysis nor complexity of the computation
of cluster pictures has been presented in these previous works.

1.1 Contributions.
In what follows, we let 𝐴 be the valuation ring of a discrete rank-
one valued field (𝐾, 𝑣𝐾 ). We assume that 𝐴 is principal. We denote
by 𝜅 the residue field of 𝐾 .

In this work, we show that computing the cluster picture of a
polynomial𝑔 ∈ 𝐾 [𝑥]mainly reduces to compute anOM-factorization
under the assumption that no wild ramification occurs. More pre-
cisely, this paper is dedicated to three main tasks, assuming that
the residual characteristic is zero or large enough :

(1) We provide and showcase an implementation of the OM
algorithm.

(2) We make explicit and constructive the connection between
the OM factorisation of 𝑔, the valuative tree (Section 5.1),
the cluster picture of its roots (Section 3) and the Berkovich
skeleton (Section 6).

(3) We elaborate on this connection to provide and showcase
an algorithm to compute cluster pictures based on the OM
algorithms.

Combined with [28], this leads to the following complexity esti-
mates for cluster pictures and Berkovich skeleton :

Theorem 1.1. There exists a deterministic algorithm which, given

𝑔 ∈ 𝐴[𝑥] monic separable of degree 𝑑 such that char(𝜅) = 0 or

char(𝜅) > 𝑑 , computes the cluster picture and the Berkovich skeleton

of the roots of𝑔 with𝑂𝜀 (𝑑𝛿) operations in𝜅 where 𝛿 = 𝛿 (𝑔) is the gen-
eralized Okutsu bound

2
, plus some residual univariate factorizations

whose costs fit in the bound if 𝜅 = F𝑝 .

We use here the notation𝑂𝜀 (𝑑) := 𝑂 (𝑑1+𝑜 (1) ) where𝑂 () denote
the classical asymptotic notation. We work with computation trees
and we use an algebraic RAM model, counting only the number of
arithmetic operations in 𝜅.

1https://github.com/alexjbest/cluster-pictures/tree/master
2See Eq. (1) on page 5.
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Remark 1.2. This result follows from the fact that we can easily

deduce the cluster picture from an OM-factorization with suitable

precision. If the residual characteristic is small, we may still compute

an OM-factorization of 𝑔 (with a higher complexity due to the lack of

approximate roots, see Remark 4.1 and [3, 28]). However, the output is

not sufficient to recover cluster pictures when wild ramification occurs

(see Example 4.3).

Remark 1.3. By [27], the bound 𝛿 (𝑔) is at most twice the 𝑣𝐾 -

index of the integral closure of 𝐴 in 𝐾 [𝑥]/(𝑔). In particular, we have

𝛿 (𝑔) ≤ 𝑣𝐾 (Disc(𝑔)), the difference being possibly significant.

Remark 1.4. If 𝑔 ∈ 𝐴[𝑥] is not monic, a single Hensel lifting

allows to reduce to the monic case. However, we need then to take care

of the valuation of the leading coefficient of 𝑔 in the bound 𝛿 (𝑔) (see
e.g. [26] for such considerations in the context of Puiseux series).

1.2 History and related results
History. The OM algorithm is inspired from a pioneering work of

Ore in the 1920s [24, 23] about the factorization of a prime number
𝑝 in a number field Q[𝑥]/(𝑔). Ore conjectured the existence of an
algorithm based on the iteration of a double dissection process, in
the spirit of Hensel’s work : a partial factorization according to the
slopes of the Newton polygon attached to some extended valuation
of Q[𝑥], and a further partial factorization according to the prime
factors of a certain residual polynomial of 𝑔 attached to each slope.
In the 1930s, Mac Lane solved this problem in the more general
context of a discrete rank-one field (𝐾, 𝑣𝑘 ), introducing the central
notion of inductive valuations and key polynomials [16, 15]. In
the 1980s, Okutsu [21] constructed similar approximations without
using valuations on 𝐾 [𝑥] nor key polynomials, motivated by the
computation of integral bases in local fields. In 1999, Montes [25]
constructed a concrete residual polynomial operator leading to the
design of a practical algorithm following the exact pattern that Ore
had foreseen. This algorithm is known as the OM algorithm, named
after Ore, Mac Lane, Okutsu and Montes.

Complexity. Up to our knowledge, the best complexity results
for the OM algorithm is given in [28], thanks to a fast Hensel lifting
with respect to an extended valuation, and a divide and conquer
strategy based on a suitable care of the precision. Moreover, when
the residual characteristic is zero or high enough (as assumed in
this paper), Abhyankar’s approximate roots provide some easy-to-
compute optimal key polynomials, allowing to decrease the number
of iterations of the double dissection process. This leads to the
complexity stated in Theorem 1.1.

Generalization to non discrete rank-one valuations. Besides com-
plexity issues, approximate roots are crucial objects since they allow
to generalize the OM algorithm for some non discrete rank-one
valued fields [1], based on the modern theory of Mac Lane-Vaquié
valuations, [32, 18]. Let us mention that there does not exist nowa-
days an OM algorithm for non discrete or higher rank valuations in
arbitrary residual characteristic. This open problem is of particular
importance with regards to its deep interplay with the resolution
of singularities in positive characteristic, see e.g. [20, 19].

Algorithmic of global fields. Besides factoring polynomials over
Henselian fields, the OM algorithm leads to very efficient resolution

of many arithmetic-geometric tasks in number fields and function
fields of algebraic curves, such as factoring ideals in Dedekind rings
(which was the original motivation of Ore) or computing integral
basis [9, 11, 27]. A package ’+Ideals’ for Magma has been designed
for this purpose in the case of number fields [10].

Arithmetic geometry and clusters. Mac Lane valuations and key
polynomials play also a key role in arithmetic geometry since we
can use valuations to represent a normal model of a curve 𝑋 over a
valued field 𝐾 , a key point towards the computation of a semistable
model of 𝑋 (that is an integral, proper, and flat scheme over the
valuation ring of 𝐾 with generic fiber 𝑋 and whose special fiber is
reduced with ordinary double points as singularities). This fact is
illustrated in the case of hyperelliptic curves in [13, 29]. It turns out
that many computational tasks of arithmetic geometry (semistable
model, lattice of regular forms, regulator, etc.) are facilitated once
we know the cluster picture of the input polynomial (see e.g. [13,
6, 7]), this combinatorial object being a convenient representation
of the relative 𝑣𝐾 -adic distances between the roots. In turn, the
connection between valuations and cluster pictures requires the
language of rigid analytic geometry. On one hand, there exists a
bijection between augmented valuations on 𝐾 [𝑥] with residual
transcendental extensions and rigid diskoids with finite radius [29,
Thm 4.56], and on the other hand it is shown in [13] that we can
recover the cluster pictures from these diskoids (at least in the
tamely ramified case). The possibility of using various languages
for somehow a same object is of theoretical and practical interest,
as it relates valuation theory, arithmetic geometry and Berkovich
geometry. As such, we believe that it is an important issue to design
efficient algorithms to switch from one representation (valuations,
clusters, or skeleton) to another.

1.3 Organisation.
In Section 2, we define the inductive valuations of 𝐾 [𝑥] as intro-
duced by Mac Lane [16, 15], and we explain how to represent them
with diskoids, following [29]. We define the cluster picture of a
polynomial 𝑔 ∈ 𝐾 [𝑥] in Section 3, providing some illustrative ex-
amples. In Section 4, we detail the OM algorithm of [28] (assuming
residual characteristic zero or large enough), and we give some first
illustrations of its connection with clusters. Example 4.3 shows that
assuming tame ramification is unavoidable in this context. Section 5
constitutes the main part of this paper : we explain how to compute
the cluster picture of a polynomial 𝑔 from an OM-factorization with
a suitable precision. To this aim, we use the notion of valuative tree
and we relate on Proposition 5.9 to compute the relative depths of
the clusters. We obtain in such a way a complexity estimates for the
computation of cluster pictures (Theorem 5.11). In the last Section
6, we deduce an algorithm which computes the Berkovich skeleton
of a polynomial 𝑔, which is a certain sub-tree of the Berkovich unit
disk representing the roots of 𝑔, giving a new representation of an
OM-factorization in the language of rigid analytic geometry.

The algorithms presented in this document have been imple-
mented in SageMath [31] and are available at https://gist.github.
com/TristanVaccon. The bibliography is followed by an Annex
Section where we showcase the principal characteristics of our
implementations.

https://gist.github.com/TristanVaccon
https://gist.github.com/TristanVaccon


2 AUGMENTED VALUATIONS AND DISKOIDS
2.1 Inductive valuations
Let 𝑉 (𝐾 [𝑥]) denote the set of discrete valuations on 𝐾 [𝑥] which
extend 𝑣𝐾 and satisfy 𝑣 (𝑥) ≥ 0. The set 𝑉 (𝐾 [𝑥]) can be equipped
with the partial order: 𝑣 ≤ 𝑣 ′ if for any 𝑓 ∈ 𝐾 [𝑥], 𝑣 (𝑓 ) ≤ 𝑣 ′ (𝑓 ).

Example 2.1. The Gauss valuation, 𝑣0 defined by

𝑣0

(∑︁
𝑖

𝑎𝑖𝑥
𝑖

)
:= min

𝑖
{𝑣𝐾 (𝑎𝑖 )} ,

is a minimal element of 𝑉 (𝐾 [𝑥]) with respect to the partial order ≤.

Definition 2.2. Let 𝑣 ∈ 𝑉 (𝐾 [𝑥]) and 𝑓 , 𝑔, ℎ ∈ 𝐾 [𝑥] .
(1) 𝑓 , 𝑔 are 𝑣-equivalent (𝑓 ∼𝑣 𝑔) if 𝑣 (𝑓 − 𝑔) > 𝑣 (𝑓 ) = 𝑣 (𝑔) .
(2) 𝑓 𝑣-divides 𝑔 (𝑓 |𝑣 𝑔) if 𝑔 ∼𝑣 𝑓 𝑓 ′ for some 𝑓 ′ ∈ 𝐾 [𝑥]. It is

𝑣-irreducible if 𝑓 |𝑣 𝑔ℎ implies 𝑓 |𝑣 𝑔 or 𝑓 |𝑣 𝑔 and 𝑣-minimal
if 𝑓 |𝑣 𝑔 implies deg(𝑓 ) ≤ deg(𝑔).

(3) 𝜙 ∈ 𝐾 [𝑥] is called a key polynomial for 𝑣 if 𝜙 is monic,

integral, 𝑣-irreducible and 𝑣-minimal.

Definition 2.3. Let 𝑣 ∈ 𝑉 (𝐾 [𝑥]), 𝜙 a key polynomial over 𝑣 and

𝜆 > 𝑣 (𝜙).We define the augmented valuation 𝑣 ′ = [𝑣, 𝑣 ′ (𝜙) = 𝜆] ∈
𝑉 (𝐾 [𝑥]) of 𝑣 with respect to (𝜙, 𝜆) as follows. Let 𝑓 ∈ 𝐾 [𝑥] and
write its unique 𝜙-expansion as 𝑓 =

∑
𝑖 𝑓𝑖𝜙

𝑖
(that is 𝑓𝑖 ∈ 𝐾 [𝑥] and

deg(𝑓𝑖 ) < deg(𝜙) for all 𝑖). Then 𝑣 ′ (𝑓 ) := min𝑖 (𝑣 (𝑓𝑖 ) + 𝑖𝜆) .

Definition 2.4. Starting from the Gauss valuation 𝑣0, and given
polynomials 𝜙1, . . . , 𝜙𝑛 with deg(𝜙1) < · · · < deg(𝜙𝑛) and positive
rationals 𝜆1 < · · · < 𝜆𝑛,we define recursively the inductive valuation

𝑣𝑛 = [𝑣0, 𝑣1 (𝜙1) = 𝜆1, . . . , 𝑣𝑛 (𝜙𝑛) = 𝜆𝑛]
via 𝑣𝑘 := [𝑣𝑘−1, 𝑣𝑘 (𝜙𝑘 ) = 𝜆𝑘 ] for 𝑘 = 1, · · · , 𝑛, as long as 𝜙𝑘 is a key

polynomial for 𝑣𝑘−1.

Approximating valuations of 𝐿/𝐾 by inductive valuations. We
fix an algebraic closure 𝐾 of 𝐾 and an extension of 𝑣𝐾 to 𝐾 . This
determines an henselization 𝐾 ⊂ 𝐾ℎ ⊂ 𝐾 , and we abusively still
denote 𝑣𝐾 the unique extension of 𝑣𝐾 to these valued fields. Any
irreducible polynomial 𝑓 ∈ 𝐾ℎ [𝑥] induces a quasi-valuation 𝑤 𝑓
on 𝐾 [𝑥] by 𝑤 𝑓 (𝑞) := 𝑣𝐾 (𝑞(𝛼)) for 𝛼 an arbitrary root of 𝑓 . The
quasi-valuation𝑤 𝑓 has kernel 𝑔𝐾 [𝑥] where 𝑔 is the minimal poly-
nomial of 𝛼 over 𝐾 , hence induces a valuation 𝑤 𝑓 on the field
extension 𝐿 = 𝐾 [𝑥]/(𝑔). This construction establishes a one-to-one
correspondence between the irreducible factors 𝑓 of 𝑔 in 𝐾ℎ [𝑥]
and the extensions of 𝑣𝐾 to the field 𝐿. We refer to [1] for details.
Given 𝑔 ∈ 𝐾 [𝑥], the OM-algorithm computes for each factor 𝑓 an
inductive valuation which approximates 𝑤 𝑓 from which we can
deduce the ramification index and the residual degree of𝑤 𝑓 .

2.2 Data attached to inductive valuations
Definition 2.5. Let 𝑣 ∈ 𝑉 (𝐾 [𝑥]) be a valuation. The valuation

ring of 𝑣 is 𝑂𝑣 := {𝑓 ∈ 𝐾 [𝑥] : 𝑣 (𝑓 ) ≥ 0}. Its prime ideal is 𝑂+𝑣 :=
{𝑓 ∈ 𝐾 [𝑥] : 𝑣 (𝑓 ) > 0} and its residue ring ℜ𝑣 := 𝑂𝑣/𝑂+𝑣 .

The valuation 𝑣 naturally extends to the field 𝐾 (𝑥) and the
residue field of (𝐾 (𝑥), 𝑣) is the field of fraction of ℜ𝑣 .

Definition 2.6. Let 𝑣𝑛 = [𝑣0, 𝑣1 (𝜙1) = 𝜆1, . . . , 𝑣𝑛 (𝜙𝑛) = 𝜆𝑛] be
an inductive valuation.

(1) The value group of 𝑣𝑛 is the subgroup Γ𝑛 ⊂ Q generated

by 𝑣𝑛 (𝐾 [𝑥]). The relative ramification index of 𝑣𝑛 is 𝑒𝑛 :=
(Γ𝑛 : Γ𝑛−1) ∈ N.

(2) For all 𝑖, ℜ𝑣𝑖 is isomorphic to a polynomial ring 𝜅𝑣𝑖 [𝑦𝑖 ] for
some finite field extension 𝜅𝑣𝑖 of 𝜅 , with 𝜅𝑣0 = 𝜅 . The field 𝜅𝑣𝑖
is the relative algebraic closure of 𝜅 in the residue field of 𝑣𝑖 .

(3) For all 𝑖 ≥ 1, the field 𝜅𝑣𝑖 is a finite extension of 𝜅𝑣𝑖−1 and we

define the relative residual degree of 𝑣𝑖 as 𝑓𝑖 := [𝜅𝑣𝑖 : 𝜅𝑣𝑖−1 ] .

2.3 diskoids
It is well known that the norm function counterpart to the Gauss
valuation 𝑣0 is the maximum norm on the unit disk. There is a
generalization to this result to any inductive valuation, involving
diskoids, a generalization of discs. The connection between induc-
tive valuations and diskoids has been pioneered by Julian Rüth in
his seminal PhD-thesis work [29]. These results have been extended
and made numerically more precise in [5, 13, 14].

Definition 2.7. Let 𝛼 ∈ 𝐾 and let 𝜆 ∈ Q. Then 𝐷𝐾 (𝛼 ; 𝜆) :=
{𝑥 ∈ 𝐾 : 𝑣𝐾 (𝑥 − 𝛼) ≥ 𝜆} is the (closed) diskwith center𝛼 and radius

𝜆 over 𝐾 . The index 𝐾 will be omitted when the context is clear.

Definition 2.8. Let 𝜙 ∈ 𝐾 [𝑥] be a monic irreducible polynomial

and let 𝜆 ∈ Q. Then 𝐷𝐾 (𝜙 ; 𝜆) := {𝑥 ∈ 𝐾 : 𝑣𝐾 (𝜙 (𝑥)) ≥ 𝜆} is the
diskoidwith center𝜙 and radius 𝜆 over𝐾 . The index𝐾 will be omitted

when the context is clear.

When extending scalars to 𝐾 , diskoids become union of disks:

Lemma 2.9 ([29, Lem. 4.43]). Let 𝜙 ∈ 𝐾 [𝑥] be a monic irreducible

polynomial, let 𝜆 ∈ Q and let 𝛼1, . . . , 𝛼𝑑 be the roots of 𝜙 over 𝐾 .

Then there exists some 𝛾 ∈ Q such that:

𝐷
𝐾
(𝜙, 𝜆) = ∪𝑑𝑖=1𝐷𝐾 (𝛼𝑖 , 𝛾).

Thanks to [29], there is an explicit bijection between inductive
valuations and diskoids. The main point is the following.

Theorem 2.10 ([29, Th. 4.56]). Let 𝑣𝑛 = [𝑣0, . . . , 𝑣𝑛 (𝜙𝑛) = 𝜆𝑛] be
an inductive valuation. Then

∀𝑓 ∈ 𝐾 [𝑥], 𝑣𝑛 (𝑓 ) = inf {𝑣𝐾 (𝑓 (𝑥)), for 𝑥 ∈ 𝐷𝐾 (𝜙𝑛, 𝜆𝑛)} .

This result is the extension of the fact that: ∀𝑓 ∈ 𝐾 [𝑥], 𝑣0 (𝑓 ) =
min {𝑣𝐾 (𝑓 (𝑥)), for 𝑥 ∈ 𝐷𝐾 (0, 0)} .

3 CLUSTER PICTURES
We follow the definitions of [13, §3.2]. Let 𝑓 = 𝑐 𝑓

∏𝑑
𝑖=1 (𝑐 − 𝛼𝑖 ) ∈

𝐾 [𝑥] be a polynomial with 𝑐 𝑓 ∈ 𝐾 and 𝛼1, . . . , 𝛼𝑑 ∈ 𝐾 . We denote
by ℜ the set of roots of 𝑓 : ℜ = {𝛼1, . . . , 𝛼𝑑 }.

Definition 3.1. (1) A cluster is a non-empty subset 𝔰 ⊂ ℜ of

the form 𝔰 = 𝐷 ∩ℜ for some disk 𝐷 = 𝐷
𝐾
(𝛼, 𝜆) with 𝛼 ∈ 𝐾

and 𝜆 ∈ Q. We call 𝛼 a center of the cluster.
(2) If |𝔰 | > 1 then 𝔰 is called a proper cluster and its depth is

defined to be 𝑑𝔰 := min𝛼,𝛼 ′∈𝔰 𝑣𝐾 (𝛼 − 𝛼 ′).
(3) If 𝔰 ≠ ℜ, we let 𝑃 (𝔰) be the smallest cluster strictly containing

𝔰 and call it the parent of 𝔰. Conversely, 𝔰 is a child of 𝑃 (𝔰).
(4) The relative depth of a proper cluster 𝔰 is defined as 𝛿𝔰 :=

𝑑𝔰 − 𝑑𝑃 (𝔰) . In addition, we set 𝛿ℜ := 𝑑ℜ .



(5) The cluster picture of 𝑓 , denoted by Σ𝑓 is the set of all clusters
of ℜ with its partial-order set structure provided by the parent

(or inclusion) relation.

Definition 3.2. (1) A set of clusters 𝔬 = {𝔰1, . . . , 𝔰𝑚} is called
a Galois orbit of clusters if the absolute Galois group 𝐺𝐾 acts

transitively on 𝔬. In this case, because the action of 𝐺𝐾 is

isometric, all the 𝔰𝑖 ’s have the same depth, denoted by 𝑑𝔬 .

(2) Let 𝔬, 𝔬′ be two Galois orbits. We say that 𝔬 is the parent of 𝔬′
if for very every cluster 𝔰′ ⊂ 𝔬′ there exists a cluster 𝔰 ⊂ 𝔬 such

that 𝔰′ ⊂ 𝔰 and 𝔬 is the smallest cluster orbit which satisfies

this property. We also say that 𝔬′ is a child of 𝔬.

(3) We write 𝑃∗ (𝔬) for the smallest cluster containing all clusters

in the Galois orbit 𝔬.

Definition 3.3. (1) For a cluster 𝔰 ⊂ ℜ, let 𝐷𝔰 := 𝐷
𝐾
(𝛼𝔰, 𝑑𝔰),

where 𝛼𝔰 ∈ 𝐾 is a center of 𝔰 and 𝑑𝔰 is the depth of 𝔰. We say

that 𝐷𝔰 is the disk associated to 𝔰.

(2) Let 𝔬 = {𝔰1, . . . , 𝔰𝑚} be a Galois orbit of clusters. Let 𝑔 be the
factor of 𝑓 with set of roots equal to 𝔰1 ∪ · · · ∪ 𝔰𝑚 .We define

𝐷𝔬 := 𝐷 (𝑔, 𝜆), where 𝜆 = min
{
𝑔(𝛼) |𝛼 ∈ 𝐷𝔰1 ∪ · · · ∪ 𝐷𝔰𝑚

}
and say that 𝐷𝔬 is the 𝐾-diskoid associated to the orbit 𝔬.

Representation of cluster pictures. The clusters can be represented
by embedded boxes with subscript indicating the relative depth,
except for the top box for which it is its depth. The roots are repre-
sented by red dots. There is a line between clusters or between roots
to represent a Galois orbit: those connected clusters or connected
roots are permuted by Galois action.

Example 3.4. Let 𝑓1,1 = (𝑥2 − 𝑡) (𝑥 − 𝑡2) (𝑥 − 2𝑡2) (𝑥3 − 𝑡5), 𝑓1,2 =
(𝑥2−𝑡3)2−𝑡10 = (𝑥2−𝑡3−𝑡5) (𝑥2−𝑡3+𝑡5) and 𝑓1,3 = (𝑥2−𝑡3)2+𝑡10 be
polynomials in Q[𝑡] [𝑥]. Because of the factorisation into two factors

over Q[𝑡] of 𝑓1,2, there is two disjoints Galois orbits of roots and one
Galois orbit of two clusters at depth

7
2 . In contrary, the four roots of

𝑓1,3 are in one Galois orbit which splits into two cluster orbits at depth
7
2 . One can represent their respective three cluster pictures as follows.

• • • • •1
3

• •7
6 1

2
0

• • • •
2 2 3

2 0

• • • •
2 2 3

2 0

4 OM ALGORITHMS
We assume that the valuation ring 𝐴 of 𝐾 is principal, and we
consider for simplicity 𝑔 ∈ 𝐴[𝑥] a monic separable polynomial.
Recall that 𝐾ℎ stands for an Henselization of (𝐾, 𝑣𝐾 ). The OM-
algorithm computes an approximation of the irreducible factors
𝑔1, . . . , 𝑔𝑟 of 𝑔 in 𝐾ℎ [𝑥]. As explained at the end of Section 2.1,
each 𝑔𝑖 determines a valuation 𝑤𝑔𝑖 on 𝐾 [𝑥]. The OM-algorithm
will compute some inductive valuations 𝑣𝑖 close enough to the
valuations𝑤𝑔𝑖 to deduce the cluster picture of 𝑔.

4.1 Required Tools Already Available
Reduction. Given an inductive valuation 𝜇, one can compute the

residual ring morphism surjection: 𝐾 [𝑥] ↠ ℜ𝑣 = 𝑂𝑣/𝑂+𝑣 , whose

kernel is𝑂+𝑣 . It can be extended into an application 𝑅𝜇 : 𝐾 [𝑥] ↠ ℜ𝑣
s.t. for any 𝑔, ℎ ∈ 𝐾 [𝑥], 𝑅𝜇 (𝑔ℎ) = 𝑅𝜇 (𝑔)𝑅𝜇 (ℎ) and key polynomials
of 𝜇 are sent to irreducible elements of ℜ𝑣 . We refer to [8, 22] and
[29, §4.1.3] for more details on how to compute 𝑅𝜇 in practice.

Liftings. We assume conversely that there is a lifting procedure
fromℜ𝑣 to𝐾 [𝑥] sendingmonic irreducible polynomials to key poly-
nomials. We also assume that there is a Hensel procedure taking as
parameters 𝑔, 𝜇, [𝜙𝑛00 , . . . , 𝜙

𝑛𝑠
𝑠 ]), 𝜎 such that 𝜇 (𝑔) = 𝜇 (𝜙𝑛00 𝜙

𝑛𝑠
𝑠 ) and

𝜇 (𝑔 − 𝜙𝑛00 𝜙
𝑛𝑠
𝑠 ) − 𝜇 (𝑔) > 0 and providing 𝐺 (𝜎 )0 , . . . ,𝐺

(𝜎 )
𝑛 such that

for all 𝑖 , 𝑅𝜇 (𝐺 (𝜎 )𝑖
) = 𝜙𝑛𝑖

𝑖
and 𝜇 (𝑔 −𝐺 (𝜎 )0 𝐺

(𝜎 )
𝑠 ) − 𝜇 (𝑔) > 𝜎 . See [28,

§4].

Generalized Newton Polygons. Let 𝜇 be an inductive valuation,
𝜙 ∈ 𝐾 [𝑥] a key polynomial for 𝜇 and 𝑔 ∈ 𝐾 [𝑥]. If 𝑔 = 𝑎𝑛𝜙

𝑛 +
𝑎𝑛−1𝑖𝑛−1 + · · · +𝑎1𝜙 +𝑎0 is its 𝜙-adic development, the generalized
Newton polygon 𝑁𝜇,𝜙 (𝑔) is the upper convex hull of the points
(𝑖, 𝜇 (𝑎𝑖 )). As for the classical Newton polygon, slopes of 𝑁𝜇,𝜙 (𝑔)
are directly connected to the roots of 𝑔 and its factorization.

4.2 Approximate roots
Since [28, 1] it is known that some of the key polynomials to con-
sider in the OM algorithms can be efficiently produced using approx-
imate roots. A monic polynomial 𝑄 ∈ 𝐾 [𝑥] is an 𝑛-th approximate

root of a monic polynomial 𝑔 ∈ 𝐾 [𝑥] if the 𝑄-adic expansion of 𝑔
(i.e. deg(𝑎𝑖 ) < deg(𝐺)) has no (𝑛 − 1)𝑡ℎ coefficient:

𝑔 = 𝑄𝑛 + 𝑎𝑛−2𝑄𝑛−2 + · · · + 𝑎1𝑄 + 𝑎0

Note deg(𝑄) = deg(𝑔)
𝑛 . When 𝑛 | deg(𝑔) and char(𝐾) ∤ deg(𝑔), the

𝑛-th approximate root exists and is unique. It can be computed
very naturally as 𝜓 , starting from 𝜓 = 𝑥deg(𝑔)/𝑛 and repeating:
(1) Write 𝑔 = 𝜓𝑛 + 𝑎𝑛−1𝜓𝑛−1 + · · · + 𝑎1𝜓 + 𝑎0, the𝜓 -expansion of 𝑔,
(2)𝜓 ← 𝜓 + 𝑎𝑛−1𝑛 , until 𝑎𝑛−1 = 0. Thanks to a Newton operator, a
faster algorithm in softly-linear complexity is obtained in [26].

4.3 Irreducibility Test
Algorithm 1 builds an inductive valuation that proves if an entry
polynomial is irreducible or not. It is a first step towards an OM-
factorization. From [27, Thm 2], we can perform all computations
using a 𝑣𝐾 -adic precision 2𝛿 (𝑔)/deg(𝑔), where 𝛿 (𝑔) is defined in
Eq. (1). This implies a complexity 𝑂𝜀 (𝛿 (𝑔)) [28].

Remark 4.1. If char(𝜅) divides deg(𝑔), either approximate roots

do not exist, or they are not key polynomials. In such a case, we

rather compute at step 8 a (non canonical) representative of𝜓 , that

is a monic polynomial 𝜙 ∈ 𝐴[𝑥] whose residual polynomial is𝜓 . In

contrast to approximate roots, we get a key polynomial which is not

necessarily optimal : the next computed key polynomial, say 𝜙 ′, may

satisfy deg(𝜙) = deg(𝜙 ′), leading to a so-called refinement step. The

algorithm terminates anyway, but the complexity is 𝑂𝜀 (𝛿 (𝑔)2) (see
[3]). Unfortunately, these considerations are not sufficient to recover

the cluster pictures from an OM-factorization when wild ramification

occurs, see Example 4.3 below.



Algorithm 1: OM-Irreducibility
input :𝑔 ∈ 𝐴[𝑥] monic and separable. Assume

char(𝜅) ∤ deg(𝑔) (otherwise use Remark 4.1).
output :A boolean expressing whether 𝑔 is irreducible or

not in 𝐾ℎ , an inductive valuation proving the
irreducibility or that 𝑔 splits, and a key polynomial

1 𝜇 ← 𝜇0, 𝜙 ← 𝑡 , 𝑛 ← deg(𝑔) ; // 𝜇0: Gauss valuation

2 while 𝑛 > 1 do
3 if 𝑁𝜇,𝜙 (𝑔) is one-sided (of slope −𝜆) then
4 𝜇 ← 𝜇′ = [𝜇; 𝜇′ (𝜙) = 𝜆] // augmented valuation

5 else return False, 𝜇, 𝜙 ;
6 if 𝑅𝜇,𝜙 (𝑔) = 𝜓𝑚 for some𝜓 ∈ Irr(𝑅𝜇 ) then
7 𝜙 ← ApproximateRoot(𝑔,𝑚)
8 else return False, 𝜇, 𝜙 ;
9 𝑛 ←𝑚 ;

10 return True, 𝜇, 𝜙

4.4 Valuation and cluster pictures along an
inductive valuation

Let us present the cluster pictures of the key polynomials obtained
when applying Algorithm 1 to 𝑓2 := ((𝑥4 − 2𝑡2)4 − 3𝑡10)2 − 6𝑡22.
The key polynomials are 𝜙1 = 𝑥 , 𝜙2 := 𝑥4 − 2𝑡2 and 𝜙3 := 𝑥16 −
8𝑡2𝑥12 + 24𝑡4𝑥8 − 32𝑡6𝑥4 − 3𝑡10 + 16𝑡8 . We represent below the
cluster pictures of 𝜙2, 𝜙3 and 𝑓2, respectively.
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One can see that passing from 𝜙2 to 𝜙3 and 𝜙3 to 𝑓2, roots are
replaced by clusters of roots and thus, the cluster picture is refined
at each step until obtaining that of 𝑓2 . This connection between
cluster pictures and inductive valuations has been made precise in
the following proposition.

Proposition 4.2 (Direct corollary of [13, Prop. 3.18]). Let
𝑣 = [𝑣0, 𝑣1 (𝜙1) = 𝜆1, . . . , 𝑣𝑛 (𝜙𝑛) = 𝜆𝑛] be an inductive valuation

with deg(𝜙𝑖 ) strictly increasing and the 𝜙𝑖 ’s monic and irreducible,

and char(𝜅) = 0 or char(𝜅) > deg(𝜙𝑛).3 Then the cluster picture of

𝜙𝑛 is a chain of Galois orbits defined by the diskoids of the 𝑣𝑖 ’s:

𝐷 (0, 0) ⊃ 𝐷 (𝜙1, 𝜆1) ⊃ · · · ⊃ 𝐷 (𝜙𝑛−1, 𝜆𝑛−1) .

Without the assumption char(𝜅) = 0 or char(𝜅) > deg(𝜙𝑛),
there is no 1-1 correspondence between cluster pictures and the
diskoids defined by an inductive valuation.

Example 4.3 ( [13, Exp. 3.19]). Let 𝜙2 := 𝑥4 − 2 ∈ Q2 [𝑥]. Because

val2 (2 4√2) = 5
4 , its cluster picture is:

• • • •
1 1 1

4 0

However, 𝜙2 is irreducible and one can not get a longer chain of

valuation than [𝑣0, 𝑣1 (𝑥) = 1
4 , 𝑣2 (𝑥

4 − 2) = +∞] . In other words, the

two clusters with two roots and relative depth 1 can not be seen on

the chain of valuations.

While Proposition 4.2 provides a connection between cluster
pictures and diskoids of inductive valuations for an irreducible
polynomial, it still remains to understand what happens for a non
irreducible polynomial and how to obtain the data on the cluster
picture. We answer those questions using Algorithm 2.

4.5 OM-factorization algorithm
Algorithm 2 provides approximation of all the irreducible factors
in 𝐾ℎ [𝑥] and all the valuations for the valuative tree.

Precision. We need to perform computations (especially Hensel
liftings) up to a suitable precision. Denote 𝐴ℎ the valuation ring of
𝐾ℎ . Let𝐺 ∈ 𝐴ℎ [𝑥] monic of degree 𝑑 , separable and irreducible. Let
𝛼 be a root of 𝐺 . The valuation 𝑣𝐾 extends uniquely to a valuation
on the field 𝐾ℎ (𝛼) that we still denote 𝑣𝐾 . We define the Okutsu
bound of 𝐺 as

𝛿0 (𝐺) := 𝑑 max
{
𝑣𝐾 (ℎ(𝛼))
deg(ℎ) , ℎ ∈ 𝐴[𝑥] monic, deg(ℎ) < 𝑑

}
.

Given 𝑔 ∈ 𝐴ℎ [𝑥] monic and separable with irreducible factors
𝐺1, . . . ,𝐺𝑟 ∈ 𝐴ℎ [𝑥], and denoting 𝑑𝑖 = deg(𝐺𝑖 ), the generalized

Okutsu bound of 𝑔 is

𝛿 (𝑔) := 1
2

∑︁
𝑖

𝑑𝑖𝛿0 (𝐺𝑖 ) +
∑︁
𝑖≠𝑗

𝑣𝐾 (𝑅𝑒𝑠 (𝐺𝑖 ,𝐺 𝑗 )) . (1)

By [27, Thm 2], running the OM-algorithm with precision 𝛿 (𝑔)
computes for each 𝑖 an approximation 𝑔𝑖 of 𝐺𝑖 with the complete
inductive valuation leading to it, and with the extra condition
𝑣𝐾 (𝑔𝑖 (𝛼𝑖 )) > 𝑣𝑘 (𝑔𝑖 (𝛼 𝑗 )) for all 𝑖 ≠ 𝑗 , with 𝛼𝑖 an arbitrary root
of 𝐺𝑖 . Such a data is called an OM-factorization of 𝑔.

The precision bound satisfies 𝛿 (𝑔) ≤ 𝑣𝐾 (Disc(𝑔)), hence im-
proves the discriminant valuation which is traditionally considered
in the literature (the gain is particularly significant when wild
ramification occurs). This bound can be further improved in some
particular cases (see [27, Section 2.2]), a key point for a divide-
and-conquer strategy being that the bound 2𝛿 (𝑔)/𝑑 is sufficient for
irreducibility test.

3This last assumption is generalized in [13] into: the splitting field of 𝜙𝑛 is tamely
ramified over 𝐾 .



Algorithm 2: OM-Factorization
input :𝑔 ∈ 𝐴[𝑥] monic separable with char(𝜅) = 0 or

char(𝜅) > deg(𝑔), and 𝜎 > 𝛿 (𝑔) a precision.
output :The irreducible factors of 𝑔 ∈ 𝐾ℎ [𝑥] computed

with Gauss precision ≥ 𝜎 and a set of induced
valuations for which they are the leaves

1 𝐵, 𝜇, 𝜙 ← OM-Irreducibility(𝑔) ;
2 if B then return g, {𝜇};
3 −𝜆 ← right-end slope of 𝑁𝜇,𝜙 (𝑔) ;
4 𝜇𝜆 ← [𝜇, 𝜇𝜆 (𝜙) = 𝜆] ;
5 Compute and factorize 𝑅𝜇𝜆 (𝑔) = 𝜓

𝑛1
1 . . .𝜓

𝑛𝑠
𝑠 ∈ ℜ𝜇𝜆 ;

6 Compute some 𝜙𝑖 ← lift𝜇𝜆 (𝜓𝑖 ) ;
7 (𝜙0, 𝑛0) ← (𝜙, 𝑛𝜆) ;
8 𝐺
(𝜎 )
0 , . . . ,𝐺

(𝜎 )
𝑛 ← Hensel(𝑔, 𝜇𝜆, [𝜙𝑛00 , . . . , 𝜙

𝑛𝑠
𝑠 ], 𝜎);

9 Fact, Val← {} , {} ;
10 for 𝑖 = 0, . . . , 𝑠 do
11 if 𝑛𝑖 = 1 then
12 Add 𝐺𝑖 (𝜎) to Fact, add 𝜇𝜆 and

𝜇𝐺𝜎
𝑖
= [𝜇𝜆, 𝜇𝐺𝜎

𝑖
(𝐺 (𝜎 )
𝑖
) = +∞] to Val

13 Fact𝑖 ,V𝑖 ← OM-Factorization(𝐺 (𝜎 )
𝑖

, 𝜎);
14 Join Fact and Fact𝑖 , join Val and Val𝑖
15 return Fact, Val

Proposition 4.4 ([28]). Replacing the recursion of Algo. 2 (Line 13)
with a divide and conquer strategy, the cost of the OM-factorization

of a square-free polynomial 𝑔 ∈ 𝐴[𝑥] performed at precision 𝜎 >

𝛿 (𝑔), assuming char(𝜅) = 0 or char(𝜅) > deg(𝑔), is in𝑂𝜀 (deg(𝑔)𝜎)
arithmetic operations over 𝜅 up to the cost of the residual univariate

factorizations.

5 VALUATIVE TREES AND CLUSTER
PICTURES

5.1 The OM valuative tree of a polynomial
The partial order on 𝑉 (𝐾 [𝑥]) defined in Subsection 2.1 provides
𝑉 (𝐾 [𝑥]) with the structure of a tree in the sense that for any
𝜇 ∈ 𝑉 (𝐾 [𝑥]), the set {𝜌 ∈ 𝑉 (𝐾 [𝑥])⧸𝜌 ≤ 𝜇} is totally ordered. It is
extended with finite leaves of the form𝑤 𝑓 (see Subsec 2.1) to form
the valuative tree. It has been studied in more details in [13, §2.4]
and prominently in [2].

We present in Algorithm 3 the computation of the sub-tree of the
valuative tree obtained from the result of the OM-factorization of a
polynomial. We need the following definition for its computation.

Definition 5.1. A rooted directed graph 𝐺 with root 𝑟 satisfies

that there is a directed path from 𝑟 to any other vertex of 𝐺. The

covering arborescence of a rooted directed graph 𝐺 with root 𝑟 is a

subgraph of 𝐺 such that it contains all the vertices of 𝐺 but for any

other vertex 𝑣 , there is exactly one directed walk from 𝑟 to 𝑣 . It is a

directed acyclic graph.

Remark 5.2. In SageMath, we can obtain the covering arbores-

cence of 𝐺 in Algorithm 3 using the Hasse diagram method of the

Poset class.

Algorithm 3: OM-ValuativeTree
input :𝑔 a monic polynomial in 𝐾 [𝑥], 𝜎 ∈ Q a precision

Ensure 𝑔 is square-free, char(𝜅) = 0 or
char(𝜅) > deg(𝑔), and 𝜎 > 𝛿 (𝑔)

output :The valuative tree of 𝑔

1 Fact, Val← OM-Factorization(𝑔, 𝜎) ;
2 SetVal← the set of valuations in the chain of valuations of

the inductive valuation 𝜇 for all 𝜇 ∈ Val ;
3 Compute G as the oriented graph whose vertices are the

valuations in SetVal and whose oriented edges are the
(𝜇1, 𝜇2) when 𝜇1 > 𝜇2 (according to the partial order on
𝑉 (𝐾 [𝑥])) ;

4 Compute ValTree as the covering arborescence of G with root
𝜇0 ;

5 return ValTree

5.2 From tree to picture
In this subsection, we present how to compute the cluster picture
of a polynomial from its valuative tree. The first idea is that the
diskoids corresponding to the inductive valuations (thanks to Sub-
section 2.3) also correspond to the clusters and the Galois orbits of
clusters of Section 3, thanks to Prop. 4.2, when the ramification is
not wild (see Ex. 4.3). The first ingredient is the following:

Lemma 5.3. Let us consider an inductive valuation

𝑣𝑛+1 = [𝑣0, 𝑣1 (𝜙1) = 𝜆1, . . . , 𝑣𝑛 (𝜙𝑛) = 𝜆𝑛, 𝑣𝑛+1 (𝜙𝑛+1) = 𝜆𝑛+1],
with possibly 𝜆𝑛+1 = +∞. Then 𝐷 (𝜙𝑛+1, 𝜆𝑛+1) ⊊ 𝐷 (𝜙𝑛, 𝜆𝑛) and in

particular, the roots of 𝜙𝑛+1 are contained in 𝐷 (𝜙𝑛, 𝜆𝑛).

Proof. Since 𝑣𝑛 ≤ 𝑣𝑛+1 then 𝐷 (𝜙𝑛+1, 𝜆𝑛+1) ⊊ 𝐷 (𝜙𝑛, 𝜆𝑛) by
[29, Thm. 4.56]. By Lemma 2.9, the roots of 𝜙𝑛+1 are contained in
𝐷 (𝜙𝑛+1, 𝜆𝑛+1) thus in 𝐷 (𝜙𝑛, 𝜆𝑛). □

Corollary 5.4. If in the valuative tree of 𝑔 ∈ 𝐾 [𝑥], we have a
path 𝑣0 → · · · → 𝑣𝑛 → 𝑤 𝑓 from the root 𝑣0 to some finite leaf 𝑤 𝑓

for 𝑓 ∈ 𝐾ℎ [𝑥] an irreducible factor of 𝑔 then the roots of 𝑓 (subset of

the roots of 𝑔) are contained in all the diskoids of the 𝑣𝑖 ’s.

Consequently, and thanks to Prop. 4.2, we see that parent-children
relations and the branching in the valuative tree expose how the
roots of 𝑔 can be arranged into disks, and more precisely, how one
can construct the cluster picture from them. From the previous
corollary, the diskoids of 𝑣𝑛 contain the roots of 𝑓 and therefore, we
call them the clusters of 𝑣𝑛 . They are all conjugated by the Galois
action. We continue with a lemma.

Lemma 5.5. Let us consider an inductive valuation

𝑣𝑛+1 = [𝑣0, 𝑣1 (𝜙1) = 𝜆1, . . . , 𝑣𝑛 (𝜙𝑛) = 𝜆𝑛, 𝑣𝑛+1 (𝜙𝑛+1) = 𝜆𝑛+1] .
obtained as 𝜇 on Line 4 of Algorithm 1. Then deg(𝜙𝑛) divides deg(𝜙𝑛+1).

Proof. By the proof of [1, Prop 6.3], deg(𝜙𝑛+1 )deg(𝜙𝑛 ) = 𝑒𝑛+1 𝑓𝑛+1 ∈ Z,
with 𝑒𝑛+1, 𝑓𝑛+1 the relative ramification index and residual degree
of 𝑣𝑛+1. □

The integers deg(𝜙𝑛+1 )
deg(𝜙𝑛 ) ’s will be central in controlling the con-

struction of the clusters along the valuative tree.



To construct the cluster picture of a polynomial 𝑔 ∈ 𝐾 [𝑥] with
roots of nonnegative valuation, we start from the root of the valua-
tive tree of 𝑔, 𝑣0, the Gauss valuation on the unit disk 𝐷 (0, 0). At
first, thanks to Corollary 5.4, all the roots of 𝑔 are in 𝐷

𝐾
(0, 0), the

diskoid corresponding to 𝑣0. We then follow the descending paths
in the valuative tree to refine the diskoids and clusters, arranging
the roots inside them.

From a node in the valuative tree, there are two possibilities for
its children. If it has one child only, it can be obtained from one
step in Algorithm 1. If it has multiple children, they come from
dissections in Algorithm 2. In the first case, we can explain how
the disks composing the diskoids are refined.

Proposition 5.6. Let 𝑣𝑛+1 = [𝑣0, 𝑣1 (𝜙1) = 𝜆1, . . . , 𝑣𝑛 (𝜙𝑛) =

𝜆𝑛, 𝑣𝑛+1 (𝜙𝑛+1) = 𝜆𝑛+1] be an inductive valuation. There are deg(𝜙𝑛+1 )
deg(𝜙𝑛 )

conjugated disks of𝐷 (𝑣𝑛+1, 𝜆𝑛+1) inside each of the disks of𝐷 (𝑣𝑛, 𝜆𝑛).

Proof. The diskoid 𝐷𝑣𝑛 has deg(𝜙𝑛) disks (in 𝐾) which are all
conjugated by Galois action, and same for 𝐷𝑣𝑛+1 and deg(𝜙𝑛+) .
Because of the Galois action, there are the same number of disks of
𝐷𝑣𝑛+1 inside each disk of 𝐷𝑣𝑛 . Thus there are

deg(𝜙𝑛+1 )
deg(𝜙𝑛 ) conjugated

disks of 𝐷𝑣𝑛+1 inside each disk of 𝐷𝑣𝑛 . □

Corollary 5.7. With the same notations, when passing from the

node 𝑣𝑛 to 𝑣𝑛+1, then there are
deg(𝜙𝑛+1 )
deg(𝜙𝑛 ) conjugated clusters of 𝑣𝑛+1

inside each of the clusters of 𝑣𝑛 . They may be non-proper clusters.

We now study what happens in the second case.

Lemma 5.8. If 𝑣𝑛 has 𝑣
(1)
𝑛+1, . . . , 𝑣

(𝑚)
𝑛+1 for descendants in the valua-

tive tree, then the diskoids defined by the 𝑣
(𝑖 )
𝑛+1’s do not intersect.

Proof. They are disjoints because of [29, Lem. 4.44] and [29,
Thm 4.56]. □

Consequently the clusters of 𝑣𝑛 are each the home to one cluster
of 𝑣 ( 𝑗 )

𝑛+1, for all 𝑗 ∈ [1,𝑚].
This is enough to get the principle of how to compute a cluster

picture from the valuative tree. However, we still need to present a
recipe to compute the relative depth of those clusters.

Proposition 5.9. Let us consider an inductive valuation

𝑣𝑛+1 = [𝑣0, 𝑣1 (𝜙1) = 𝜆1, . . . , 𝑣𝑛 (𝜙𝑛) = 𝜆𝑛, 𝑣𝑛+1 (𝜙𝑛+1) = 𝜆𝑛+1] .
Then the relative depth of the conjugated clusters of 𝑣𝑛+1 satisfies:

𝛿𝑣𝑛+1 = 𝜆𝑛+1 − 𝜆𝑛
deg(𝜙𝑛+1)
deg(𝜙𝑛)

.

Proof. Let 𝔰 (𝑛)
𝑖

be the roots of 𝜙𝑛 inside a cluster of 𝑣𝑖 , and
same for 𝔰 (𝑛+1)

𝑗
with 𝜙𝑛+1 . Because of Prop 5.6, for all 𝑖 , |𝔰 (𝑛+1)

𝑖
| =

deg(𝜙𝑛+1 )
deg(𝜙𝑛 ) |𝔰

(𝑛)
𝑖
|. Also, since 𝜙𝑛+1 is irreducible, |𝔰 (𝑛+1)𝑛+1 | = 1.

By construction, 𝛿
𝔰
(𝑛+1)
𝑛

= 𝛿𝑣𝑛+1 . Thanks to [13, Prop. 3.10],

𝜆𝑛+1 = 𝑑𝔰 (𝑛+1)0
|𝔰 (𝑛+1)0 | +

𝑛+1∑︁
𝑖=1

𝛿
𝔰
(𝑛+1)
𝑖

|𝔰 (𝑛+1)
𝑖

|,

𝜆𝑛 = 𝑑
𝔰
(𝑛)
0
|𝔰 (𝑛)0 | +

𝑛−1∑︁
𝑖=1

𝛿
𝔰
(𝑛)
𝑖

|𝔰 (𝑛)
𝑖
|.

Thus,

𝜆𝑛+1 = 𝑑𝔰 (𝑛+1)0
|𝔰 (𝑛+1)0 | +

𝑛+1∑︁
𝑖=1

𝛿
𝔰
(𝑛+1)
𝑖

|𝔰 (𝑛+1)
𝑖

|

=
deg(𝜙𝑛+1)
deg(𝜙𝑛)

(
𝑑
𝔰
(𝑛)
0
|𝔰 (𝑛)0 | +

𝑛−1∑︁
𝑖=1

𝛿
𝔰
(𝑛)
𝑖

|𝔰 (𝑛)
𝑖
|
)
+ 𝛿

𝔰
(𝑛+1)
𝑛

= 𝛿
𝔰
(𝑛+1)
𝑛
+ 𝜆𝑛

deg(𝜙𝑛+1)
deg(𝜙𝑛)

,

from which we can deduce the desired formula. □

Algorithm 4: ClusterPicture
input :𝑔 a monic polynomial in 𝐴[𝑥], 𝜎 ∈ Q a precision

Ensure 𝑔 is separable, char(𝜅) = 0 or
char(𝜅) > deg(𝑔) and 𝜎 > 𝛿 (𝑔)

output :The cluster picture of 𝑔

1 ValTree← OM-ValuativeTree(𝑔, 𝜎) ;
2 𝜇 ← 𝑣0, the root of ValTree ;
3 return ClusterPrinting(ValTree, 𝜇)

Algorithm 5: ClusterPrinting
input :ValTree, a valuative tree and 𝜇, a valuation, one of

the nodes of ValTree
output :The cluster picture of of the valuative tree

descending from the node 𝜇

1 if 𝜇 = 𝑣0 the root of ValTree then 𝛿 ← 0, 𝑛conj ← 1 ;
2 else
3 Write 𝜇 = [𝑣0, . . . , 𝑣𝑛 (𝜙𝑛) = 𝜆𝑛, 𝑣𝑛+1 (𝜙𝑛+1) = 𝜆𝑛+1] ;
4 𝛿 ← 𝜆𝑛+1 − 𝜆𝑛 deg(𝜙𝑛+1 )

deg(𝜙𝑛 ) , 𝑛conj ←
deg(𝜙𝑛+1 )
deg(𝜙𝑛 ) ;

5 if 𝜇 is a leaf of ValTtree then
6 Draw 𝑛conj points connected by "–" and Quit ;
7 Draw a box 𝔅 with index 𝛿 ;
8 for 𝜈 a descendant of 𝜇 do
9 Call ClusterPrinting(ValTree,𝜈) to draw inside 𝔅

10 𝔇← 𝔅 ;
11 for 𝑖 ∈ J1, 𝑛conj − 1K do // We compute the orbit
12 𝔇← 𝔇 − −𝔅 ; // of the cluster 𝔅

13 Draw𝔇

Proposition 5.10. Algorithm 4 compute the cluster picture of 𝑔

as long as 𝑔 satisfies the required conditions of the input.

Proof. It is clear that the computation provides clusters and or-
bits of clusters inside the cluster picture of 𝑔 with the right relative
depths. We can add furthermore that no cluster is missing. Indeed,
if we assume there is a missing cluster, we can define a diskoid
from it, and then an inductive valuation, thanks to the correspon-
dence between diskoids and inductive valuations. This inductive
valuation would have to take place in the valuative tree ValTree
as it is necessary smaller than some of the valuation at the leaves.



However:
• No valuation providing a dissection in the OM algorithm could
have been missed since otherwise, we could find a cycle in the
valuative tree 𝑉 (𝐾 [𝑥]) using two paths to some leaf of ValTree.
•No valuation can be intermediate between two steps of Algorithm
1. Indeed, this is the main point of [1, §6.1]: no additional refinement
step can occur thanks to the usage of approximate roots. □

From Proposition 4.4, we can conclude on the cost of computing
the cluster polynomial of a polynomial with moderate ramification:

Theorem 5.11. For a separable monic polynomial 𝑔 ∈ 𝐴[𝑥], if
either char(𝜅) = 0 or char(𝜅) > deg(𝑔), one can compute the cluster

picture of 𝑔 in𝑂𝜀 (deg(𝑔)𝛿 (𝑔)) arithmetic operations over 𝜅 (up to the

cost of the residual univariate factorizations of the OM algorithm).

6 BERKOVICH SKELETON OF THE ROOTS
Berkovich geometry is a part of non-archimedean geometry that
provides a concept of path connectivity in a world usually totally
discontinuous. Being built on norms, its connection to the study
of valuations is appealing. A first seed was already present in [17]
with its trees of disks. In Rüth’s PhD thesis [29], the term “diskoid”
was coined because it is related to non-archimedean geometry.

6.1 Berkovich analytification and skeleton
We refer to [4, Chap. 6] for a gentle introduction to Berkovich
analytification, Berkovich affine space and Berkovich unit disk.4

Definition 6.1. From val, we define a norm | · |𝐾 on 𝐾 by taking

a constant
5 𝑐 ∈ R>0 and define for any 𝑥 ∈ 𝐾, |𝑥 |𝐾 = 𝑐−val(𝑥 ) .

We define the norm | · |0 on 𝐾 [𝑥] by taking for any 𝑓 ∈ 𝐾 [𝑥],
|𝑓 |0 := sup𝑥∈𝐷 (0,0) |𝑓 (𝑥) |𝐾 .

Definition 6.2. The Berkovich unit disk, denoted by 𝐷 (0, 0)𝑎𝑛, is
the set of the multiplicative semi-norms of 𝐾 [𝑥] bounded by | · |0 , i.e.
the mappings | · | : 𝐾 [𝑥] → R≥0 such that for any (𝑓 , 𝑔) ∈ 𝐾 [𝑥]2:

|𝑓 𝑔 | = |𝑓 | |𝑔|, |𝑓 + 𝑔 | ≤ max ( |𝑓 |, |𝑔|) and |𝑓 | ≤ |𝑓 |0
Definition 6.3. The mappings 𝑓 ↦→ |𝑓 (𝑎) |𝐾 = sup𝐷 (𝑎,+∞) |𝑓 |𝐾

and 𝑓 ↦→ sup𝐷 (𝑎,𝑟 ) |𝑓 |𝐾 for 𝑎 ∈ 𝐷 (0, 0) and 𝑟 ≥ 0 are examples of

elements of 𝐷 (0, 0)𝑎𝑛 . The first one is called a point of Type I and
denoted | · |𝐷 (𝑎,+∞) and the second one is called a point of Type II if
𝑟 ∈ val(𝐾) and of Type III otherwise, and likewise denoted | · |𝐷 (𝑎,𝑟 ) .

There are also points of Type IV in 𝐷 (0, 0)𝑎𝑛 but they will play
no role for us and thus we skip their introduction.

Definition 6.4. Let 𝑎, 𝑏 ∈ 𝐷 (0, 0), 𝑎 ≠ 𝑏, and 𝑟, 𝑠 ∈ R+ ∪ {+∞}.
Let 𝑡 = min(val(𝑏 − 𝑎), 𝑟 , 𝑠), the biggest valuation value such that

𝐷 (𝑎, 𝑟 ) ⊂ 𝐷 (𝑎, 𝑡) = 𝐷 (𝑏, 𝑡) ⊃ 𝐷 (𝑏, 𝑠). We define the path in

𝐷 (0, 0)𝑎𝑛 between | · |𝐷 (𝑎,𝑟 ) and | · |𝐷 (𝑏,𝑠 ) as the set{
| · |𝐷 (𝑎,𝑢 ) for 𝑢 ∈ [𝑡, 𝑟 ]

}
∪

{
| · |𝐷 (𝑏,𝑠 ) for 𝑢 ∈ [𝑡, 𝑠]

}
.

Definition 6.5. The convex hull of a set 𝑆 ⊂ 𝐷 (0, 0)𝑎𝑛 of points

of type I, II or III is the set of all points | · |𝐷 (𝑎,𝑢 ) ∈ 𝐷 (0, 0)𝑎𝑛 such

that there are 𝜁1, 𝜁2 ∈ 𝑆 such that | · |𝐷 (𝑎,𝑢 ) is in the path between 𝜁1
and 𝜁2. If 𝑆 is finite, the convex hull of 𝑆 is called the skeleton of 𝑆 .

4Losing a little of generality in favor of clarity, we have sometimes simplified or
weakened the definitions of [4, Chap. 6].
5Usually, 𝑐 = 2 or 𝑐 = 𝑝 when 𝐾 = Q𝑝 for some prime number 𝑝 .

While not completely unrelated, this definition should not be
confused with that of the Berkovich skeleton of a curve or any
other notion of skeleton in Berkovich geometry.

6.2 Skeleton of the roots
It is natural to define the skeleton of the roots of a polynomial 𝑔 ∈
𝐴[𝑥] as the skeleton of the set of its roots in 𝐷

𝐾
(0, 0) seen as points

of type I in 𝐷 (0, 0)𝑎𝑛 .

Example 6.6. With 𝑓1,2 = (𝑥2−𝑡3)2−𝑡10, the skeleton of the roots
can be represented as

𝐷

(
0, 32

)
𝐷

(
𝑡
3
2 , 72

)
𝐷

(
−𝑡

3
2 , 72

)
𝐷

(
𝑡
3
2 + 1

2 𝑡
7
2 + . . . , +∞

)
𝐷

(
𝑡
3
2 − 1

2 𝑡
7
2 + . . . , +∞

)𝐷

(
−𝑡

3
2 + 1

2 𝑡
7
2 + . . . , +∞

)
𝐷

(
−𝑡

3
2 − 1

2 𝑡
7
2 + . . . , +∞

)
From the definition, it is clear that skeleton of the roots can

be obtained up to homotopy (i.e. without having to represent the
roots and the value of the radii) directly from the cluster picture
of 𝑔 by omitting the relative depth and the conjugation between
roots, We then get the following complexity result on the cost of
the computation of the skeleton of the roots.

Proposition 6.7. For a separable polynomial𝑔 ∈ 𝐴[𝑥], if char(𝜅) =
0 or char(𝜅) > deg(𝑔), one can compute the skeleton of the set of
roots of 𝑔, up to homotopy, with the same cost as in Theorem 5.11.

This proposition together with Theorem 5.11 leads to the proof
of Theorem 1.1. As such, this connection between valuative tree,
cluster picture and skeleton of the roots of a polynomial contributes
in building a bridge between the theory of valuations and that of
Berkovich geometry. For another point of view on this topic, one
can also consult [30].
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ANNEX: IMPLEMENTATION
The algorithms presented in this document have been implemented
in SageMath [31] and are available here: https://gist.github.com/
TristanVaccon.

Basic tools
Most of the low-level components of the algorithms have been im-
plemented by Julian Rüth for SageMath: see https://doc.sagemath.
org/html/en/reference/valuations/index.html. In particular, induc-
tive valuations and suitable methods for them were already there,
with the exception of the computation of the generalized reduction
𝑅𝜇 for a valuation 𝜇 and the truncation of an element of 𝐴[𝑥] with
respect to a valuation. Liftings and the generalization of Newton
polygons were also needed. Here an example of the definition of
inductive valuations and an application of 𝑅𝑣3 .

In: A = FunctionField(QQ,’t’)
In: B = PolynomialRing(A,’x’)
In: t = A.gen(), x = B.gen()
In: vA = A.valuation(t)
In: v0 = GaussValuation(B,vA)
In: v1 = v0.augmentation(x, 1/2)
In: v2 = v1.augmentation(x^4 - 2*t^2, 5/2)
In: v3 = v2.augmentation(x^16 - 8*t^2*x^12 + 24*t^4*x^8

- 32*t^6*x^4 - 3*t^10 + 16*t^8, 11)
In: f = ((x^4-2*t^2)^4-3*t^10)^2-6*t^22
In: Generalized_Reduction(f, v3)
Out: x^2 - 6

OM-Irreductibility
We can apply Algorithm 1 to prove the irreducibility over 𝐾ℎ of a
polynomial or obtain an inductive valuation proving the reducibility.
Here is an example with 𝑓2 defined below.

In: f_2 = ((x^4-2t^2)^4-3t^10)^2-6t^22
In: test, v, 𝜙 = OM_irreducibility_nthRoot_final(f_2)
In: test
Out: False
In: v
Out: [ Gauss valuation induced by (t)-adic valuation,

v(x) = 1/2, v(𝑥4 − 2 𝑡2) = 5/2,
v(𝑥16 − 8 𝑡2 𝑥12 + 24 𝑡4 𝑥8 − 32 𝑡6 𝑥4 − 3 𝑡10 + 16 𝑡8) = 11 ]

https://arxiv.org/abs/2003.12357
https://doi.org/10.1215/S0012-7094-36-00243-0
https://doi.org/10.1215/S0012-7094-36-00243-0
https://doi.org/10.3792/pjaa.58.47
https://doi.org/10.3792/pjaa.58.47
%5Ctt%20https://github.com/MCLF/mclf
https://gist.github.com/TristanVaccon
https://gist.github.com/TristanVaccon
https://doc.sagemath.org/html/en/reference/valuations/index.html
https://doc.sagemath.org/html/en/reference/valuations/index.html
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Figure 1: Cluster picture for 𝑓3

OM-Factorisation
We now showcase an application of Algorithm 2 with the polyno-
mial 𝑓3 which, in order to have non-trivial factors, is defined by:
(1)𝜙1 = 𝑥2−𝑡 , (2)𝜙2 = 𝜙31+2 𝑡

4, (3)𝜙3 = (𝜙52+4 𝑡
27) (𝜙32−2 𝑡

13)+𝑡51,
and (4) 𝑓3 = 𝜙23 − 𝑡

82 + 𝑡83. Its factorization over the 𝐾ℎ possesses
6 factors. In the following, the factorization takes place with a
conservative precision 100.

In: phi1= x^2 - t
In: phi2 = phi1^3+2*t^4
In: phi3 = (phi2^5+4*t^27)*(phi2^3-2*t^13) + t^51
In: f3 = phi3^2-t^82+t^83
In: irred_fact,G= OM_Factorization(f_3, 100)
In: [u.degree() for u in irred_fact]
Out: [30, 30, 12, 12, 6, 6]

Cluster pictures
We conclude with the display of the valuative trees and cluster
pictures of 𝑓2 and 𝑓3. The valuative trees are presented as directed
graphs whereas we represent the cluster pictures using ASCII art
similarly to [6].

In: VT2 := Valuative_Tree (f2, 50)
Out: Digraph on 6 vertices
In: VT2.show (vertex_labels = False, layout='tree', tree_root = v0)

Out:
In: Cluster_Picture_ASCII_from_Val_Tree(VT)
Out: ((((* *)_1--(* *)_1--(* *)_1--(* *)_1)_1/2

--((* *)_1--(* *)_1--(* *)_1--(* *)_1)_1/2
--((* *)_1--(* *)_1--(* *)_1--(* *)_1)_1/2
--((* *)_1--(* *)_1--(* *)_1--(* *)_1)_1/2)_1/2)_0

In: VT3 := Valuative_Tree (f3, 100)
Out: Digraph on 14 vertices
In: VT3.show (vertex_labels = False, layout='tree', tree_root = v0)

Out:
In: Cluster_Picture_ASCII_from_Val_Tree(VT3)
Out: ((((((* *)_1--(* *)_1--(* *)_1--(* *)_1--(* *)_1)_16/15

(* *)_19/3--(* *)_19/3 (* *)_19/3)_1/3--
(((* *)_1--(* *)_1--(* *)_1--((* *)_19/3
(* *)_19/3)_1/3)_1/3--((((**)_1--(* *)_1--(* *)_1
--(* *)_1--(* *)_1)_16/15
(* *)_19/3--(* *)_19/3 (* *)_19/3)_1/3-_1--(* *)_1)_16/15
(* *)_19/3--(* *)_19/3 (* *)_19/3)_1/3)_1/3)_1/2)_0

A representation of the cluster picture of 𝑓3 is given in Figure 1.
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