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Abstract. We develop a new algorithm for factoring a bivariate polynomial
F ∈ K[x, y] which takes fully advantage of the geometry of the Newton polygon

of F . Under some non degeneracy hypothesis, the complexity is Õ(V rω−1
0 )

where V is the volume of the polygon and r0 is its minimal lower lattice length.

The integer r0 reflects some combinatorial constraints imposed by the polygon,

giving a reasonable and easy-to-compute upper bound for the number of non
trivial indecomposable Minkovski summands. The proof is based on a new fast

factorization algorithm in K[[x]][y] with respect to a slope valuation, a result

which has its own interest.

1. Introduction

Factoring a bivariate polynomial F ∈ K[x, y] over a field K is a fundamental task
of Computer Algebra which received a particular attention since the years 1970s.
We refer the reader to [10, Chapter III] and [6, 7, 11, 13] for a detailed historical
account and an extended bibliography on the subject. For a dense polynomial of
bidegree (dx, dy), the current complexity is O(dxd

ω
y ) plus one univariate factoriza-

tion of degree dy [11, 13]. Here, 2 ≤ ω ≤ 3 is so that we can multiply n×n matrices
over K with O(nω) operations in K. The current theoretical bound is ω ≈ 2.38 [10],
although ω is in practice closer to 3 in most software implementations.

In this paper, we will rather focus on finer complexity indicators attached to the
Newton polygon N(F ), convex hull of the set of exponents of F . The polynomial F
is assumed to be represented by the list of its coefficients associated to the lattice
points of N(F ), including zero coefficients. Following [2], we talk about convex-
dense representation. Assuming N(F ) two-dimensional, the size of F can also be
measured as the euclidean volume V of N(F ) by Pick’s formula.

Various convex-dense factorization algorithms have been proposed in the last two
decades, see e.g. [1, 2, 22, 23] and references therein. In [2], the authors compute in
softly linear time a map τ ∈ Aut(Z2) so that the volume of τ(N(F )) is comparable
to the volume of its bounding rectangle. Applying a classical dense algorithm on
the resulting polynomial τ(F ), they get a complexity estimate O(V nω−1) where n
is the width of the bounding rectangle, thus recovering the usual cost if F is a dense
polynomial. However, this algorithm does not take advantage of the combinatorial
constraints imposed by Ostrowski’s theorem, namely:

N(GH) = N(G) +N(H)

where + indicates Minkowski sum. Regarding this issue, we developed in [22, 23]
some convex-dense algorithms based on toric geometry which take fully advantage
of Ostrowski’s combinatorial constraints. Unfortunately, the algorithm only works
in characteristic zero and the complexity is not optimal.
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In this note, we intend to show that under some non degeneracy hypothesis, it is
in fact possible to take into account both the volume and Ostrowski’s constraints,
and so in arbitrary characteristic. Our complexity improves [2], the gain being
particularly significant when N(F ) has few Minkovski summands.

Complexity model. We work with computation trees [3, Section 4.4]. We use an
algebraic RAM model, counting only the number of arithmetic operations in K.
We classically denote O() and Õ() to respectively hide constant and logarithmic
factors in our complexity results ; see e.g. [10, Chapter 25, Section 7]. We use fast
multiplication of polynomials, so that two polynomials in K[x] of degree at most d

can be multiplied in softly linear time Õ(d).

1.1. Fast convex-dense factorization. Let P ⊂ R2 be a lattice polygon. Let
Λ(P ) be the lower boundary of P , union of edges whose inward normal vectors have
strictly positive second coordinate. The (lower) lattice length of P is

r(P ) := Card(Λ(P ) ∩ Z2)− 1.

As r(PQ) = r(P ) + r(Q), this integer gives an easy-to-compute upper bound for
the number of indecomposable Minkovski summands of P which are not a vertical
segment (computing all Minkovski sum decompositions is NP-complete [9]).

Let F =
∑
cijx

jyi ∈ K[x±1, y±1]. The support of F is the set of exponents
(i, j) ∈ Z2 such that cij 6= 0. Take care that the exponents of y are represented
by the horizontal axis. The Newton polygon N(F ) of F is the convex hull of its
support and we denote for short Λ(F ) its lower boundary.

Definition 1. We say that F is not degenerated if for all edge E ⊂ Λ(F ), the edge
polynomial y− ordy(FE)FE is separable in y, where FE :=

∑
(i,j)∈E∩Z2 cijx

jyi.

Note that FE ∈ K[x±1][y] is quasi-homogeneous, hence its factorization reduces
to a univariate factorization of degree the lattice length of E.

Let us denote for short V = Vol(N(F )) and r = r(N(F )). Note that r ≤ dy.
Due to Ostrowski’s theorem, r is an upper bound for the numbers of irreducible
factors of F of positive y-degree. Our main result is:

Theorem 1. There exists a deterministic algorithm which given F ∈ K[x, y] non
degenerated, computes the irreducible factorization of F over K with

(1) Õ(rV ) +O(rω−1V ) operations in K if p = 0 or p ≥ 4V , or

(2) Õ(krω−1V ) operations in Fp if K = Fpk ,

plus some univariate factorizations over K whose degree sum is r.

As in [2], we recover the usual complexity estimate O(dxd
ω
y ) when F is a dense

polynomial. However, Theorem 1 may improve significantly [2] when F is non
degenerated, as illustrated by the following example.

Example 1. Let F of bidegree (2n, 2n), with Newton polygon

N(F ) = Conv((0, 2), (2n, 0), (0, 2n), (2n, 2n)).

The lower lattice length is r = 2, which is a very strong combinatorial constraint:
there is a unique Minkovski sum decomposition whose summands have positive vol-
ume (Figure 1 below).
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As the bounding rectangle has size O(V ), the convex-dense approach of [2] boils
down to the dense algorithm [13]. We get the following complexity estimates:
• Dense [13, 11] or convex-dense [2] algorithms: O(nω+1) operations in K plus

one univariate factorization of degree 2n.
• Theorem 1 (assuming F non degenerated): Õ(n2) operations in K plus one

univariate factorization of degree 2.

We get here a softly linear complexity. This is the most significant gain we can get,
including the univariate factorization step.

A weakness of classical algorithms is to perform a shift x 7→ x + x0 to reduce
to the case F (0, y) separable, losing in such a way the combinatorial constraints
offered by N(F ). Our approach avoids this shift.

1.2. Even faster. We can play with affine automorphisms τ ∈ Aut(Z2) to min-
imize r while keeping V constant before applying Theorem 1. This leads to the
concept of minimal lattice length of a lattice polygon P , defined as

(1) r0(P ) := min{r(τ(P )) | τ ∈ Aut(Z2)}.
This integer is easy to compute (Lemma 16). Note that r0(N(F )) can be reached
by several τ , which can lead to various lower boundaries with lattice length r0 (see
Example 2 below). Let τ(F ) be the image of F when applying τ to its monomial
exponents.

Definition 2. We say that F is minimally non degenerated if τ(F ) is non degen-
erated for at least one transform τ reaching r0.

If F is minimally non degenerated, we may apply Theorem 1 to τ(F ), with same
volume V but with smaller r. The factorization of F is recovered for free from that
of τ(F ). We get:

Corollary 1. Suppose that F ∈ K[x, y] is minimally non degenerated with minimal
lattice length r0. Then we can factorize F with

(1) Õ(r0V ) +O(rω−1
0 V ) operations in K if p = 0 or p ≥ 4V , or

(2) O(krω−1
0 V ) operations in Fp if K = Fpk ,

plus some univariate factorizations over K whose degree sum is r0.

Notice that similar transforms F 7→ τ(F ) are used in [2], but the authors rather
focus on minimizing the size of the bounding rectangle of N(F ), while we focus on
minimizing r. The following examples illustrate the differences between these two
approaches.
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Example 2. Let 0 < m < n be two integers and suppose that

N(F ) = Conv((0, 0), (m, 0), (0,m), (n, n),

as represented on the left side of Figure 2. The lower boundary Λ(F ) is the union of
the yellow and red edges, with lattice length r = m+ gcd(m,n). Applying the affine
automorphism τ : (i, j) 7→ (j,m−i+j), the resulting polygon τ(N(F )) has red lower
boundary, with minimal lattice length r0 = gcd(m,n). The bounding rectangle of
τ(N(F )) has volume 2mn = V/2, so [2] would apply a dense algorithm on τ(F ).
We get the following estimates:

• Dense algorithm [11, 13]: O(nω+1) operations and one univariate factor-
ization of degree n.
• Convex-dense algorithm [2]: O(nmω) operations and one univariate factor-

ization of degree 2m.
• Theorem 1 (assuming F non degenerate): O(nm gcd(n,m)ω−1) operations

and one univariate factorization of degree gcd(m,n).

Again, if gcd(m,n)� m, our approach will be significantly faster than [2], including
the univariate factorization step. Notice that by symmetry, r0 is reached also by
the transform τ ′ which maps the purple edge as the lower convex hull. Hence, even
if F were ”red-edge” degenerated, we would have a second chance that F is not
”purple-edge” degenerated, allowing then to apply Corollary 1.

Figure 2.
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In the previous example, the image τ(F ) reached simultaneously a minimal lower
lattice length and a bounding rectangle of size O(V ). The next example illustrates
that this is not always the case.

Example 3. Suppose that F has Newton polygon N(F ) as represented on the left
side of figure 3, depending on parameters k, n. The bounding rectangle of N(F ) has
volume O(kn2) = O(V ), so [2] applies a dense algorithm on F . Any black edge has
lattice length n or n+ 2 while the red edge has lattice length r2. We check that the
affine automorphism τ(i, j) = (2i+ j − 2n,−i+ kn) sends N(F ) to the right hand
polygon, leading to r0 = 2. We get the complexity estimates:

• Dense [11, 13] or convex-dense algorithms [2]: O(knω+1) and one univariate
factorization of degree 4n+ 4.
• Theorem 1 (assuming F minimally non degenerated): Õ(kn2) operations

and one univariate factorization of degree 2.
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Again, we get a softly linear complexity. This example illustrates the fact that
minimizing the lower lattice length may increase significantly the volume of the
bounding rectangle (k2n2 � V ).

Figure 3.
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Classical fast factorization algorithms are based on a ”lifting and recombination”
scheme: factorize F in K[[x]][y] with x-adic precision O(dx) and recombine the
analytic factors into global factors. Example 3 shows that we can not apply this
strategy to our target polynomial τ(F ): the analytic factorization with precision
dx = kn would have size O(k2n2) which does not fit in our aimed bound. To
remediate this, we will rather factorize τ(F ) in K[[x]][y] with respect to another
suitable valuation depending on the polygon. This is the second main result of our
paper, that we explain now.

1.3. Fast valuated analytic factorization. Let λ ∈ Q and let vλ stands for the
valuation

(2) vλ : K((x))[y]→ Q, vλ(
∑

cijx
jyi) := min(j + iλ, cij 6= 0),

with convention vλ(0) = ∞. If F ∈ K((x))[y], the lower convex hull Λ = Λ(F ) is
well defined, and Definition 1 still makes sense in this larger ring. We denote

(3) mλ(F ) = max
(i,j)∈Λ

(j + iλ)− vλ(F ).

Note that mλ(F ) ≥ 0, with equality if and only if Λ(F ) is straight of slope −λ.
We measure the quality of the vλ-approximation of F by a polynomial G by the
relative quantity vλ(F −G)− vλ(F ). We prove:

Theorem 2. Let F ∈ K((x))[y] monic of degree d. Suppose that F is non degener-
ate, with monic irreducible factors F ∗1 , . . . , F

∗
s . Given σ ≥ mλ(F ), we can compute

F1, . . . , Fs monic such that

vλ(F − F1 · · ·Fs)− vλ(F ) > σ

with Õ(dσ) operations in K plus some univariate factorizations over K whose degree
sum is at most d. Moreover, each factor is approximated with a relative precision

vλ(Fi − F ∗i )− vλ(F ∗i ) > σ −mλ(F ).

for all i = 1, . . . , s.
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Up to our knowledge, this result is new. It improves [17] and [18], which focus on
the Gauss valuation v0 and reach a quasi-optimal complexity only for σ ≥ dm0(F )
and characteristic of K zero or high enough. It turns out that we need to get rid
of all these restrictions for our purpose. The proof of Theorem 2 is based on two
main points:
• Fast arithmetic of sparse polynomials, leading to a softly linear vλ-adic Hensel

lifting (Proposition 5).
• A divide and conquer strategy based on a suitable choice of the various slopes

λ′ which will be used at each recursive call of Hensel lifting.

1.4. Main lines of the proof of Theorem 1. Except the choice of the valuation,
the strategy for the proof of Theorem 1 mainly follows [13, 24]:

•We choose a suitable λ ∈ Q and we compute the factorization of F in K[[x]][y]

with vλ-adic precision σ ∈ O(V/dy), for a cost Õ(V ) by Theorem 2.
• Adapt the logarithmic derivative method of [13, 24] to reduce to linear algebra

the problem of recombinations of the truncated analytic factors into factors in
K[x, y]. A good choice of λ is a key point to ensure that the vλ-adic precision
O(V/dy) is sufficient to solve recombinations.
•We are reduced to solve a linear system of at most r unknowns and O(V ) equa-

tions, which fits in the aimed bound. We build the underlying recombination matrix
using a fast vλ-adic euclidean division by non monic polynomials (Proposition 11).

Remark 1. If F is degenerated, we may probably compute nevertheless in softly
linear time a vλ-adic factorization of F ∈ K[[x]][y] using recent algorithms [17, 18]
combined with Theorem 2. The number of factors to recombine is less than r0, and
possibly much smaller. Unfortunately, we might need a higher precision for solving
recombinations, in which case the cost does not fit in the aimed bound. We refer
the reader to [24] for mode details of such an approach in the x-adic case.

Remark 2. Let us mention too [5], where the authors develop a Hensel lifting with
respect to a Newton precision, given by a convex piecewise affine function. It might
be interesting to look if such an approach could be useful for our purpose, as it
allows to take care of the shape of Λ(F ).

1.5. Organisation of the paper. Section 2 is dedicated to the proof of Theorem
2. In section 3, we adapt the lifting and recombination scheme of [13, 11] in the
vλ-adic context, leading to the proof of Theorem 1 and Corollary 1.

2. Fast vλ-adic factorization

In what follows, we fix λ = m/q ∈ Q with q ≥ 1 and q,m coprime and we
consider the valuation vλ as defined in (2).

2.1. The ring Aλ and its fast arithmetic. Consider the classical Newton-Puiseux
transformation

(4) τλ : K((x))[y]→ K((x))[y], F (x, y) 7→ F̂ (x, y) = F (xq, xmy).

This map is an injective K-algebra endomorphism. Thus, its image

Aλ := K((xq))[xmy] ⊂ K((x))[y]

is a subring isomorphic to K((x))[y]. We denote

A+
λ = Aλ ∩K[[x]][y] and Bλ = Aλ ∩K[x, y]
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Both sets are subrings of Aλ. Note that the map τλ preserves the size of the support
of a polynomial.

The valuation vλ is related to the Gauss valuation v0 by

(5) v0(τλ(F )) = qvλ(F )

Unfortunately, computing the v0-adic factorization of τλ(F ) which induces the vλ-
adic factorization of F with the recent softly linear algorithms [16] does not fit in
the aimed bound due to the presence of the extra factor q in (5). To remediate
this problem, we need to take advantage of the fact that τλ(F ) is sparse, which is
reflected in more details by the following lemma:

Lemma 1. Let F ∈ K((x))[y]. Then F ∈ Aλ if and only if

F =
∑
k

fk(yq)yαλ(k)xk, fk ∈ K[y]

where 0 ≤ αλ(k) < q is defined by αλ(k) ≡ km−1 mod q. Equivalently, we have:

Aλ =

q−1⊕
k=0

xkyαλ(k) K((xq))[yq].

In particular, Aλ ∩K((x)) = K((xq)) and Aλ ∩K[y] = K[yq].

Proof. By (4), we have F ∈ Aλ if and only if F =
∑
i,j cijx

mi+qjyi for some cij ∈ K.

For a fixed k, there exists i, j such that mi+ qj = k if and only i ≡ km−1[q]. The
proof follows straightforwardly. �

Corollary 2. K((x))[y] = Aλ⊕ yAλ⊕· · ·⊕ yq−1Aλ = Aλ⊕xAλ⊕· · ·⊕xq−1Aλ. �
Notice that if q > 1, neither x nor y belongs to Aλ. Let us consider the union of

all translated of Aλ and Bλ by a monomial.

Ãλ =
⋃

i∈Z,j∈N
xiyjAλ, B̃λ =

⋃
i∈Z,j∈N

xiyjBλ

These sets are not stable by addition, but they both form a multiplicative monoid.

Corollary 3. If F ∈ B̃λ has bidegree (d, n), its support has size O(dn/q). �

In what follows, we simply say precision for Gauss precision.

2.1.1. Fast multiplication in Ãλ. A key point for our purpose is that we have access
to a faster multiplication in Ãλ than in K((x))[y]. Let us start with an easy lemma.

Lemma 2. Let G,H ∈ K((x))[y] and let N ∈ Z. The product GH mod xN only
depends on G mod xN−v0(H) and H mod xN−v0(G).

Proof. Clear. �

Proposition 1. Let G,H ∈ Ãλ of degree at most d. Given n > 0, we can compute
F = GH with precision n+ v0(F ) with Õ(dn/q) operations in K.

Proof. Thanks to the relation v0(F ) = v0(G) + v0(H), Lemma 2 shows that it’s
enough to compute F0 = G0H0 where

G0 = G mod xn+v0(G), H0 = H mod xn+v0(G).

Since G0, H0 ∈ B̃λ, the supports of G0, H0 have size O(dn/q). Since B̃λ is a

monoid, the support of F0 = G0H0 ∈ B̃λ has also size O(dn/q). It follows from [21,

Proposition 6] or [20, Theorem 12] that F0 can be computed in time Õ(dn/q). �
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We thus gain a factor q when compared to usual bivariate multiplication. Note
that fast multiplication of polynomials with prescribed support is based on a sparse
multivariate evaluation-interpolation strategy (see [20, 21] and references therein),
the crucial point here being that F = GH remains sparse thanks to the monoid
structure of Ãλ.

2.1.2. Fast division in Aλ. Since the map τλ preserves the degree in y, both rings
Aλ,A+

λ are euclidean rings when considering division with respect to y. Namely,
given F,G ∈ K((x))[y], the euclidean division F = QG+R, deg(R) < deg(G) forces

the euclidean division of F̂ , Ĝ defined by (4) to be

F̂ = Q̂Ĝ+ R̂, Q̂, R̂ ∈ Aλ, deg(R̂) < deg(Ĝ).

Moreover, the next lemma ensures that if F̂ , Ĝ ∈ A+
λ (resp. Bλ) with Ĝ monic,

then Q̂, R̂ ∈ A+
λ (resp. Bλ).

Lemma 3. Let F,G ∈ K((x))[y] with euclidean division F = QG + R. Assume
that the leading coefficient of G has valuation v0(G). Then

v0(Q) ≥ v0(F )− v0(G) and v0(R) ≥ v0(F ).

Proof. See e.g. [18] (a similar result holds for an arbitrary valuation). �

Given F ∈ K((x))[y] of degree d, let us denote by F̃ = ydF (x, y−1) its reciprocal
polynomial. We will need the following lemma.

Lemma 4. Let F ∈ Aλ of degree d. Then F̃ ∈ yrA−λ where r = d mod q.

Proof. Let F ∈ Aλ with expression as in Lemma 1. Then

F̃ =
∑
k

f̃k(yq)yd−q deg(fk)−αλ(k)xk, fk ∈ K[y]

We have d − q deg(fk) − αλ(k) ≡ r + α−λ(k) mod q and the claim follows from
Lemma 1 applied in the ring A−λ. �

Proposition 2. Let F,G ∈ Aλ of degree at most d, and suppose that the leading
coefficient of G has valuation v0(G). Given n ≥ 0, we can compute Q,R ∈ Aλ with
deg(Q) < deg(G) such that

F = QG+R mod xv0(F )+n

with Õ(dn/q) operations in K.

Proof. Let e = deg(G) and d = deg(F ). Assume d > e. Let us first reduce to the
case G monic. We need to take care that multiplication by an arbitrary power of
x is not allowed in Aλ. We proceed as follows. Let k = −v0(G) and let α = αλ(k).
By Lemma 1, we have xkyα ∈ Aλ so the polynomials

G0 = xkyαG and F0 = xkyαF

belong to Aλ, with now v0(G0) = 0. We are reduced to solve

F0 = QG0 +R0 mod xv0(F0)+n

in Aλ, recovering R for free from the relation R0 = xkyαR. By assumption the
leading coefficient u(x) of G0 is invertible in K[[x]]. Moreover, deg(G0) = e + α is
divisible by q and it follows from Lemma 1 that u ∈ K[[xq]] ⊂ Aλ. Hence so does
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u−1. Thus u can be invert in A+
λ with precision n in time Õ(n/q), and we may

suppose safely that G0 is monic. Note that

deg(F0)− deg(G0) = deg(F )− deg(G) = d− e.

The classical fast euclidean division F0 = QG0 +R0 runs as follows:

(1) Truncate F0 at precision n+ v0(F0) and G0 at precision n.

(2) Compute H̃0 := G̃−1
0 mod yd−e+1 with precision n.

(3) Compute Q̃ = F̃0H̃0 mod yd−e+1 with precision n+ v0(F ).

(4) Compute Q = yd−eQ̃(x, y−1).
(5) Compute R0 = F0 −QG0 with precision n+ v0(F ).

Note that step 2 makes sense: since G0 is monic, we have G̃0(0) = 1 so G̃0 can
be invert in K[[x]][[y]]. This algorithm returns the correct output F = QG + R
if we do not truncate, see e.g. [10, Thm 9.6] and Lemma 3 and Lemma 2 ensure
that truncations are correct to get F0 = QG0 +R0 mod xn+v0(F ). Using quadratic
Newton iteration, the inversion of G̃0 at step 2 requires O(log(d)) multiplications
and additions in K[[x]][y] of degrees at most d − e with precision n (see e.g. [10,

Thm 9.4]). Since q divides deg(G0), Lemma 4 gives G̃0 ∈ A−λ, which is a ring.
Hence all additions and multiplications required by [10, Algorithm 9.3] take place
in A−λ and the cost of step 2 fits in the aimed bound thanks to Proposition 1.

Since H̃0, F̃0 ∈ Ãλ by Lemma 4, we compute Q̃ at step 3 in time Õ((d− e)n/q) by
Proposition 1. Step 4 is free. At step 5, the equation has degree d+ α and vanish
mod yα, so its sparse size is Õ(dn/q) and step 5 fits too in the aimed bound since
F0, Q,G0 ∈ Aλ. �

2.1.3. Fast Hensel lifting in Aλ.

Proposition 3. Let F ∈ A+
λ of degree d and consider a coprime factorization

F (0, y) = f0 · · · frf∞ in Aλ ∩K[y] = K[yq] with fi monic and f∞ = c ∈ K×. Then
there exists uniquely determined polynomials F0, . . . , Fr, F∞ ∈ A+

λ such that

F = F0 · · ·FrF∞, Fi(0, y) = fi(0, y) i = 0, . . . , k,∞

with Fi monic of degree deg(fi). We can compute the Fi’s with precision n within

Õ(dn/q) operations in K. Moreover, the truncated polynomials Fi mod xn are
uniquely determined by the equality F ≡ F0 · · ·FrF∞ mod xn.

Proof. This is the classical fast multi-factor hensel lifting, see e.g. [10, Algorithm
15.17]. The algorithm is based on multiplications and divisions of polynomials at
precision n. The initial Bezout relations holds here in K[yq] ⊂ Aλ, and it follows
that at each Hensel step, the input polynomials belong to the ring Aλ. Moreover, all
euclidean divisions satisfy the hypothesis of Proposition 2. The claim thus follows
from Proposition 1 and Proposition 2 together with [10, Theorem 15.18]. Unicity
of the lifting mod xn follows from [10, Theorem 15.14]. �

Remark 3. It is crucial to consider the factorization of F (0, y) in the ring Aλ.
Typically, a polynomial of shape yq−1 should be considered irreducible. Otherwise,
the complexity will be Õ(dn) due to the loss of sparse arithmetic.

Remark 4. Propositions 2 and 3 appear also in [15, Propositions 11 and 12] under
the assumption that F ∈ bpl is monic. However, the proofs have not been published
up to our knowledge.
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2.2. Fast vλ-adic Hensel lemma. By the isomorphism τλ : K((x))[y]→ Aλ, the
previous results translate in an obvious way in quasi-linear complexity estimates
for vλ-adic truncated multiplication and division in K((x))[y].

Corollary 4. Let λ ∈ Q and let G,H ∈ K((x))[y] of degree at most d. We can

compute F = GH at λ-precision vλ(F ) + σ with Õ(dσ) operations in K.

Proof. Follows from (5) together with Proposition 1. �

Corollary 5. We can multiply arbitrary polynomials G,H ∈ K[x, y] in quasi-linear
time with respect to the λ-size of the output. �

Remark 5. We could have used directly a sparse multivariate evaluation-interpolation
strategy on the input polynomials G,H. However, we believe that using fast arith-
metic in the ring Aλ is more convenient and offers more applications.

Definition 3. We say that G ∈ K((x))[y] is λ-monic if its leading monomial uye

satisfies vλ(uye) = vλ(G).

Proposition 4. Let F,G ∈ K((x))[y] of degrees at most d with G λ-monic. We
can compute Q,R ∈ K((x))[y] such that

vλ(F − (QG+R)) ≥ vλ(F ) + σ

within Õ(dσ) operations.

Proof. We apply Proposition 2 to the polynomials F̂ = τλ(F ) and Ĝ = τλ(G). We

are reduced to compute Q̂, R̂ such that

(6) v0(F̂ − (Q̂Ĝ+ R̂)) ≥ v0(F̂ ) + qσ.

Since G is assumed to be λ-monic, the leading coefficient u(x) of Ĝ has valuation

v0(Ĝ) and we conclude thanks to Proposition 2. �

We get finally a fast Hensel lifting with respect to the valuation vλ.

Definition 4. Let F =
∑
cijx

iyj ∈ K((x))[y] and σ ∈ 1
qZ. The λ-homogeneous

component of F of degree σ is

Fσ =
∑

i+jλ=σ

cijx
iyj ∈ K[x±1][y].

The λ-initial part of F is the λ-homogeneous component of F of lowest degree
vλ(F ), denoted by inλ(F ).

Let F ∈ K((x))[y]. The irreducible factorization of the λ-initial part of F can
be written in a unique way (up to permutation) as

(7) inλ(F ) = p0p1 · · · pkp∞ ∈ K[x±1][y]

where p0 = yn with n ∈ N, p∞ = uxa with a ∈ Z, u ∈ K× and where p1, . . . , pk are
coprime powers of irreducible λ-homogeneous monic polynomials, not divisible by
y. The following result is well known (see e.g. [4, Chapter VI]).

Proposition 5. There exists unique polynomials P ∗i ∈ K((x))[y] such that

F = P ∗0 · · ·P ∗kP ∗∞ ∈ K((x))[y], inλ(P ∗i ) = pi,

with P ∗i monic of deg(P ∗i ) = deg(pi) for i = 0, . . . , k. Moreover, the polynomial P ∗i
is λ-monic, and irreducible if pi is irreducible for all i = 0, . . . , k.
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We get the following complexity result:

Proposition 6. Given σ ∈ Q+, and given the irreducible factorization (7) we can
compute P0, . . . , P∞ ∈ K[x±1][y] such that

vλ(P ∗i − Pi) > vλ(P ∗i ) + σ ∀ i = 0, . . . , k,∞.

in time Õ(dσ). We have then

vλ(F − P0 · · ·P∞) > vλ(F ) + σ.

Proof. Up to multiply F by a suitable monomial xiyα with 0 ≤ α < q, we may
assume that vλ(F ) = 0. Then we apply Proposition 3 to the polynomial F̂ = τλ(F ),

starting from the factorization of F̂ (0, y) induced by the factorization of inλ(F ),
and with a suitable Gauss precision in order to recover the desired λ-precision. The
cost and the unicity of the truncated polynomial Pi follow from Proposition 3. �

Remark 6. This result improves [18, Corollary 2] which gives the complexity esti-

mate Õ(d(σ + vλ(F )). Proposition 3 has a significant impact when needed a lifting
precision closed to vλ(F ). This is precisely the case for our application to bivariate
factorization.

Definition 5. We denote PartialFacto(F, λ, σ) the algorithm which computes the
factorization (7) of inλ(F ) and returns the truncated factors P0, . . . , P∞ following
Proposition 6.

2.3. Fast vλ-adic factorization. We want now to compute the complete irre-
ducible factorization of F in K((x))[y]. Although our target precision is measured
in terms of the valuation vλ, we will perform recursive calls of PartialFacto with
various valuations vλ′ . The integer mλ(F ) introduced in (3) will play a key role.

2.3.1. The λ-defect of straightness.

Definition 6. Given P =
∑n
i=s piy

i ∈ K((x))[y] with ps, pn 6= 0, we denote
iny(P ) = psy

s the initial term of P and lty(P ) = pny
n the leading term of P .

We define

aλ(P ) = vλ(iny(P ))− vλ(P ) and bλ(P ) = vλ(lty(P ))− vλ(P ).

The λ-defect of straightness of P is mλ(P ) = max(aλ(P ), bλ(P )).

Recall from the introduction that Λ(P ) is the lower convex hull of the set of
points (i, v0(pi)), i = s, . . . , n, where v0(pi) is the x-adic valuation. By convexity,
v0(pi) + iλ takes its maximal value at i = s or i = n, hence the definition of mλ(P )
coincides with (3). The terminology for mλ is justified by the following fact:

Lemma 5. The following properties hold:

(1) aλ(P ) ≥ 0.
(2) bλ(P ) ≥ 0 with equality if and only if P is λ-monic.
(3) mλ(P ) ≥ 0 with equality if and only if Λ(P ) is one-sided of slope −λ.

Proof. This follows from the equality vλ(P ) = min{vλ(piy
i), i = s, . . . , n}. �

Corollary 6. Let P,Q ∈ K((x))[y]. We have Λ(PQ) = Λ(P ) + Λ(Q) and

mλ(PQ) ≥ max(mλ(P ),mλ(Q))

with equality if Λ(Q) or Λ(P ) is one-sided of slope −λ.
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Proof. First equality is a well known variant of Ostrowski’s theorem. Since iny and
lty are multiplicative operators and vλ is a valuation, we get

aλ(PQ) = aλ(P ) + aλ(Q) and bλ(PQ) = bλ(P ) + bλ(Q).

The inequality for mλ follows straightforwardly. If Λ(Q) or Λ(P ) is one-sided of
slope −λ, the equality follows from point (3) of Lemma 5. �

2.3.2. Comparisons between various valuations.

Lemma 6. Let λ′ ≥ λ and let P ∈ K((x))[y] of degree n. Then

vλ(P ) ≤ vλ′(P ) ≤ vλ(P ) + n(λ′ − λ)

Proof. Since i + jλ ≤ i + jλ′ we get immediately vλ ≤ vλ′ . Let (i0, j0) in the
support of P such that vλ(P ) = i0 + j0λ. We get

vλ′(P ) ≤ i0 + j0λ
′ = i0 + j0λ+ j0(λ′ − λ) = vλ(P ) + j0(λ′ − λ)

and we conclude thanks to j0 ≤ n. �

Definition 7. Let P0, P ∈ K((x))[y]. We say that P0 approximate P with relative
λ-precision σ if vλ(P − P0) > vλ(P ) + σ. We say that P is known with relative
λ-precision σ if we know such an approximant P0.

Corollary 7. Let P ∈ K((x))[y] of degree n, let λ, λ′ ∈ Q and let σ ≥ 0. If P is
known with relative λ′-precision

(8) σ′ = σ′(λ, λ′, σ, P ) :=

{
σ + vλ(P )− vλ′(P ) + n(λ′ − λ) if λ′ ≥ λ
σ + vλ(P )− vλ′(P ) if λ′ ≤ λ

then P is known with relative λ-precision σ.

Proof. The first claim follows from the second inequality in Lemma 6 for the case
λ′ ≥ λ and from the first inequality in Lemma 6 for the case λ′ ≤ λ. �

Lemma 7. We keep notations of Corollary 7.
• If λ′ ≥ λ, then mλ(P ) + vλ(P )− nλ ≥ mλ′(P ) + vλ′(P )− nλ′.
• If λ′ ≤ λ, then mλ(P ) + vλ(P ) ≥ mλ′(P ) + vλ′(P ).

Proof. Denoting P =
∑n
i=s piy

i, the first inequality is equivalent to that

max(v0(ps)− (n− s)λ, v0(pn)) ≥ max(v0(ps)− (n− s)λ′, v0(pn)),

which follows from the assumption λ ≤ λ′. The second inequality is equivalent to

max(v0(ps) + sλ, v0(pn) + nλ) ≥ max(v0(ps) + sλ′, v0(pn) + nλ′),

which follows from the assumption λ ≥ λ′. �

Corollary 8. We have σ′ − σ ≥ mλ′(P )−mλ(P ).

Proof. Combining (8) and Lemma 7 leads to the desired inequality. �

We will need also an upper bound for σ′ in terms of σ.

Lemma 8. We keep notations of Corollary 7. Suppose that bλ(P ) = 0 if λ′ ≥ λ
and that aλ(P ) = 0 and P not divisible by y if λ′ ≤ λ. Then σ′ ≤ σ +mλ′(P ).
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Proof. Suppose λ′ ≥ λ. By (8), the inequality is equivalent to

mλ′(P ) ≥ vλ(P )− vλ′(P ) + n(λ′ − λ)

Both sides are invariant when multiplying P by a power of x, hence we can safely
suppose P monic in y. The hypothesis bλ(P ) = 0 is still true and we get vλ(P ) =
vλ(yn) = nλ. We are reduced to show that mλ′(P ) ≥ nλ′− vλ′(P ) = bλ′(P ), which
follows from Definition 6. Suppose now λ′ ≤ λ. By (8), we need to show that
mλ′(P ) ≥ vλ(P ) − vλ′(P ). By hypothesis, we have vλ(P ) = vλ(p0) = vλ′(p0). We
are reduced to show that mλ′(P ) ≥ vλ′(p0)− vλ′(P ) = aλ′(P ), which follows from
Definition 6. �

2.3.3. Recursive calls. Let F ∈ K((x))[y]. We fix λ ∈ Q and a relative λ-precision
σ ≥ 0. Following Definition 5, let us consider

L = [P0, P1, . . . , Pk, P∞] = PartialFacto(F, λ, σ).

Assuming F non degenerated, we know thanks to Proposition 5 that P0, . . . , P∞
approximate some coprime factors P ∗0 , P

∗
1 , . . . , P

∗
k , P

∗
∞ of F with relative λ-precision

σ. Moreover, the polynomials P ∗1 , . . . , P
∗
k and their approximant are irreducible.

There remains to factorize (if required) the polynomials P ∗0 and P ∗∞. We denote
for short

(G∗, H∗) = (P ∗0 , P
∗
∞) and (G,H) = (P0, P∞).

Lemma 9. The polynomials G and G∗ are monic of same degree and H and H∗

are not divisible by y. Moreover:
• If P divides G, then mλ(P ) = aλ(P ) and bλ(P ) = 0.
• If P divides H, then mλ(P ) = bλ(P ) and aλ(P ) = 0.

Proof. The first claim follows from Proposition 6, Proposition 5 and (7). More
precisely, denoting G = c0 + · · ·+ cny

n and H = h0 + · · ·+ hmy
m with cn, hm 6= 0,

we have

inλ(G) = inλ(G∗) = inλ(yn) and inλ(H) = inλ(H∗) = inλ(h0).

As vλ(G − inλ(G)) > vλ(G) we deduce bλ(G) = 0 and mλ(G) = aλ(G). In the
same way, we get aλ(H) = 0 and mλ(H) = bλ(H). If P divides G, we have
bλ(P ) ≤ bλ(G) by multiplicativity of bλ. As bλ(P ) ≥ 0, this forces bλ(P ) = 0,
and thus mλ(P ) = aλ(P ). If P divides H, then 0 ≤ aλ(P ) ≤ aλ(H) forces now
aλ(P ) = 0 and mλ(P ) = bλ(P ). �

We need a lower bound on σ which ensures that we can detect the irreducible
factors of G∗ and H∗ on their approximants G and H.

Lemma 10. Suppose that σ ≥ mλ(F ). Then Λ(G) = Λ(G∗) and the restriction of
G and G∗ to their lower convex hull coincide. The same assertion is true for H
and H∗. In particular, mλ(G) = mλ(G∗) and mλ(H) = mλ(H∗).

Proof. By Lemma 9, we have G∗ = c∗sy
s+· · ·+yn with c∗s 6= 0 and G = csy

s+· · ·+yn
(we might have a priori cs = 0). By a convexity argument, we are reduced to show
that cs, c

∗
s ∈ K((x)) have same x-adic initial term. We have

vλ(c∗sy
s − csys) ≥ vλ(G−G∗) > vλ(G∗) + σ ≥ vλ(G∗) +mλ(G∗) = vλ(c∗sy

s),

the first inequality by definition of vλ, the second inequality by Proposition 5,
the last inequality by hypothesis σ ≥ mλ(F ) combined with Corollary 6, and the
last equality by Lemma 5 since G∗ is λ-monic (Proposition 5). We deduce that
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inλ(c∗sy
s) = inλ(csy

s), from which it follows that cs, c
∗
s ∈ K((x)) have same initial

term as required. The assertion for H is proved in the same way, focusing now on
the leading term of H. �

Assuming F non degenerated, its irreducible factorization in K((x))[y] is deduced
from the irreducible factorization of its lower edges polynomials. Hence, Lemma
10 ensures that knowing G and H at precision σ ≥ mλ(F ) is sufficient to detect all
remaining irreducible factors of F .

2.3.4. Divide and conquer. We apply now recursively PartialFacto to G and H
with respect to some well chosen slopes λG and λH .

Definition 8. Let n > s. The average slope of P =
∑n
i=s piy

i ∈ K((x))[y] is

λP := −v0(pn)− v0(ps)

n− s
∈ Q.

In other words, −λP is the slope of the segment joining the two extremities of the
lower boundary Λ(P ).

This slope is chosen so that the λP -valuation of the leading term and the initial
term of P coincide. Equivalently, it satisfies

(9) mλP (P ) = aλP (P ) = bλP (P ).

We deduce:

Proposition 7. Let λ and G,H as above, and suppose G,H of positive y-degree.
• If P divides G then λP ≥ λ.
• If P divides H then λP ≤ λ.

In both cases, we have mλP (P ) ≤ mλ(P ).

Proof. We can write P = a0 + · · ·+ any
n with a0, an 6= 0 and n ≥ 1. If P divides

G, Lemma 9 implies vλ(a0) ≥ vλ(any
n). Thus v0(a0) ≥ v0(an) + nλ, which implies

λP ≥ λ. We get

mλP (P ) = aλP (P ) = v0(a0)− vλP (P ) ≤ v0(a0)− vλ(P ) = aλ(P ) = mλ(P ),

the first equality by (9), the inequality thanks to λP ≥ λ and the last two equalities
by Lemma 9. If P divides H, Lemma 9 forces now vλ(P ) = vλ(a0) ≤ vλ(any

n) and
thus λP ≤ λ. By (9), we get

mλP (P ) = bλP (P ) = vλP (any
n)− vλP (P ).

On one hand, we have vλP (P ) ≥ v0(a0) = vλ(P ). On the other hand λP ≤ λ
implies vλP (any

n) ≤ vλ(any
n). We get

mλP (P ) ≤ vλ(any
n)− vλ(P ) = bλ(P ) = mλ(P ),

the two equalities by Lemma 9. �

Definition 9. Let λ be fixed and let P ∈ K((x))[y]. Given a λ-precision σ, we
denote σP = σ′(λ, λP , σ, P ) the precision induced by (8) with λ′ = λP .

We deduce the following key uniform upper bound for σP .

Proposition 8. Suppose that σ ≥ mλ(F ). If P divides G or H, then

mλP (P ) ≤ σP ≤ σ +mλ(F ).
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Proof. The inequality mλP (P ) ≤ σP follows from Corollary 8. By Lemma 8, we get
σP ≤ σ+mλP (P ). By Proposition 7, we get mλP (P ) ≤ mλ(P ). Since P divides G,
we have mλ(P ) ≤ mλ(G) by Corollary 6. By Lemma 10, we have mλ(G) = mλ(G∗),
and Corollary 6 again gives mλ(G∗) ≤ mλ(F ). The claim follows. �

The last key result ensures that using the slopes λG and λH lead to a divide
and conquer strategy. Given P ∈ K((x))[y], we denote in what follows by VP the
euclidean volume of the convex hull of Λ(P ).

Proposition 9. Let F ∈ K((x))[y] and suppose that λ = λF (as it will be the case
at the recursive calls). Let G,H ∈ K((x))[y] as defined above.

(1) dmλF (F )/2 ≤ VF ≤ dmλF (F ).
(2) VF = 0 if and only if Λ(F ) is one-sided, in which case its slope is λF .
(3) We have (VG + VH) ≤ VF /2.

Proof. We still denote Λ(F ) the convex hull of the lower boundary Λ(F ). Let
ABCD be the smallest parallelogram with two vertical sides containing Λ(F ) such
that C and D are respectively the left end point and the right end point of Λ(F )
and (AD) and (BC) are vertical (figure 4 below).

Figure 4. Illustrated proof of Proposition 9.

Λ(G)

Λ(H)Λ(F )

d = deg(F )

A

B

C

D

E

bλ(F ) = mλ(F )

aλ(F )

Denote λ = λF for short. The line (AB) has equation i + jλ = vλ(F ), and the
segments [AD] and [BC] have both length aλ(F ) = bλ(F ) = mλ(F ) (Definition
6) by choice of the average slope. Hence ABCD has volume dmλ(F ), which gives
VF ≤ dmλ(F ). By construction, there exists E ∈ [AB] ∩ Λ(F ) and by convexity,
the triangle CDE is contained in Λ(F ). Since Vol(CDE) = 1

2 Vol(ABCD), the
inequality dmλF (F )/2 ≤ VF follows, proving first point. The second item is imme-
diate. Since Λ(G) is the Minkovski summand of Λ(F ) whose all minus slopes are
strictly greater than λ (Proposition 7), we may suppose that (up to translation)
Λ(G) ⊂ Λ(F ) with left end point C and right end point I ∈ [AE]. By convexity,
Λ(G) ⊂ AED and VG ≤ Vol(AED). In the same way, we find VH ≤ Vol(BCE).
On the other hand, we have VF ≥ VG + VH + Vol(CDE). We conclude thanks to
the relation Vol(CDE) = Vol(AED) + Vol(BCE). �
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Remark 7. The partial factorization of F with respect to λF is F = G∗Q∗H∗ where
Q∗ = P ∗1 · · ·P ∗k has a one-sided lower boundary slope λF (which is [AB]∩Λ(F ) on
figure 4). However, although we use the terminology ”slope”, the rational λF is
generally not a slope of Λ(F ). In such a case, the intersection [AB] ∩ Λ(F ) is
reduced to a point and the partial λF -factorization of F is simply F = G∗H∗. An
important point is that G∗ and H∗ are not trivial factors as soon as Λ(F ) has
several slopes.

2.3.5. Proof of Theorem 2. In the following algorithm, σG, σH are defined by Defi-
nition 9, in terms of the input (λ, σ) and the current slopes λG, λH .

Algorithm: Facto(F, λ, σ)

Input: F ∈ K((x))[y] monic non degenerated, λ ∈ Q and σ ≥ mλ(F )
Output: The irreducible factors F with relative λ-precision σ −mλ(F )

1 if deg(F ) ≤ 1 then return [F ];

2 [P0, P1, . . . , Pk, P∞]←PartialFacto(F, λ, σ);

3 G← P0, H ← P∞;

4 if deg(G) = 0 then LG ← [ ] else LG ←Facto(G,λG, σG);

5 if deg(H) = 0 then LH ← [ ] else LH ←Facto(H,λH , σH);

6 return [P1, . . . , Pk] ∪ LG ∪ LH

Theorem 3. Given F ∈ K((x))[y] non degenerate with irreducible factors F ∗1 , . . . , F
∗
s

and given σ ≥ mλ(F ), running Facto(F, λ, σ) returns a list of irreducible monic
coprime polynomials F1, . . . , Fs ∈ K[x, y] such that

vλ(F − F1 · · ·Fs)− vλ(F ) > σ

within Õ(dσ) operations in K. Moreover,

vλ(Fi − F ∗i )− vλ(F ∗i ) > σ −mλ(F )

for all i = 1, . . . , s.

We will need the following lemma.

Lemma 11. If vλ(A∗ − A) > vλ(A) + σ and vλ(B − B∗) > vλ(B) + σ, then
vλ(A∗B∗ −AB) > vλ(AB) + σ.

Proof. Follows from A∗B∗−AB = A∗(B∗−B)+B(A∗−A) together with vλ(A) =
vλ(A∗) and vλ(B) = vλ(B∗). �

Proof of Theorem 3.

• Correctness. By induction on the number of recursice calls. If the algorithm
stops at step 2, then the result follows from Proposition 6. Else, we know that
G and H are not degenerated (Lemma 10) and approximate G∗ and H∗ with
relative λ-precision σ (Proposition 6). As σG ≥ mλG(G) (Proposition 8), we deduce
by induction that Facto(G,λG, σG) returns some approximants G1, . . . , Gt of the
irreducible factors G∗1, . . . , G

∗
t of G such that

(10) vλG(G−G1 · · ·Gt)− vλG(G) > σG,

with moreover

(11) vλG(Gi −G∗i )− vλG(G∗i ) > σG −mλG(G) ∀ i = 1, . . . , t.
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Corollary 7 and (10) forces

vλ(G−G1 · · ·Gt)− vλ(G) > σ.

Since vλ(G) = vλ(G∗) and vλ(G−G∗)− vλ(G∗) > σ, we deduce

vλ(G∗ −G1 · · ·Gr)− vλ(G∗) > σ.

In the same way, Facto(H,λH , σH) computes an approximate irreducible factor-
ization of H∗ such that

vλ(H∗ −H1 · · ·Hu)− vλ(H∗) > σ.

We have F = G∗P ∗1 · · ·P ∗kH∗ and we have too vλ(P ∗i −Pi)−vλ(P ∗i ) > σ (Proposition
6). The polynomials (F1, . . . , Fs) = (P1, . . . , Pk, G1, . . . , Gt, H1, . . . ,Hu) approxi-
mate the irreducible factors of F and Lemma 11 implies

vλ(F − F1 · · ·Fr)− vλ(F ) > σ

as required. There remains to show that vλ(Fi−F ∗i )− vλ(F ∗i ) > σ−mλ(F ) for all
i. This is true for the factors Pj by Proposition 5. Let us consider a factor A = Gi.
As λG ≥ λ, (11) combined with (8) gives

vλG(A−A∗) > vλG(A) + σ + vλ(G)− vλG(G) + dG(λG − λ).

Denote B the (truncated) cofactor of A in G. Using vλ(A − A∗) + dA(λG − λ) ≥
vλG(A−A∗) (Lemma 6) together with dG = dA + dB , vλ(G) = vλ(A) + vλ(B) and
vλG(G) = vλG(A) + vλG(B), the previous inequality implies that

vλ(A−A∗) > vλ(A) + σ +mλG(B)−mλ(B).

As mλG(B) ≥ 0 and mλ(B) ≤ mλ(F ) (Corollary 6), we get the desired inequality

vλ(A−A∗)− vλ(A) > σ −mλ(F ).

We prove in a similar way the analogous assertion if A = Hi is a factor of H.

• Complexity. There is at most 1+dlog2(VF )e = O(log2(dmλ(F ))) = O(log2(dσ))
recursive calls thanks to Proposition 9 (the +1 due to the fact that the initial slope λ
is random). At each level of the tree of recursive calls, the procedure PartialFacto
is called on a set of polynomials P dividing G or H and whose degree sum is at
most dG + dH ≤ d, and with λP -precision σP for each P . By Proposition 8,
σP ≤ σ +mλ(F ) ≤ 2σ for all P , and we conclude thanks to Proposition 5. �

Proof of Theorem 2. Theorem 2 follows straightforwardly from Theorem 3, taking
into account the cost of the factorizations (7) of the various quasi-homogeneous ini-
tial components. These factorizations are not trivial only when λ is a slope of Λ(F ),
in which case the degree of the underlying univariate factorization corresponds to
the lattice length of the edge of slope λ. �

3. Application to convex-dense bivariate factorization

This section is dedicated to derive from Theorem 2 a fast algorithm for factoring
a bivariate polynomial F ∈ K[x, y]. We follow closely [24], which generalizes the
usual factorization algorithm of [11, 13] to the case F (0, y) non separable. To be
consistent with [11, 24], we denote from now on by Fi the factors of F in K((x))[y]
and by Fj the factors of F in K[x, y].
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3.1. The recombination problem. In all what follows, we assume that the input
F ∈ K[x, y] is primitive and separable of degree d with respect to y (see [12] for fast
separable factorization). We normalize F by requiring that its coefficient attached
to the right end point of Λ(F ) equals 1. Up to permutation, F admits a unique
factorization

(12) F = F1 · · ·Fρ ∈ K[x, y],

where each Fj ∈ K[x, y] is irreducible and normalized. Also, F admits a unique
analytic factorization of shape

(13) F = uF1 · · · Fs ∈ K[[x]][y],

with Fi ∈ K[[x]][y] irreducible with leading coefficient xni , ni ∈ N and u ∈ K[x],
u(0) 6= 0. We thus have

(14) Fj = cjF
vj1
1 · · · Fvjss , j = 1, . . . , ρ,

for some unique vji ∈ {0, 1}, and with cj ∈ K[x], cj(0) = 1. The recombination
problem consists to compute the exponent vectors

vj = (vj1, . . . , vjs) ∈ {0, 1}s

for all j = 1, . . . , ρ. Then, the computation of the Fj ’s follows easily. Since F is
separable by hypothesis, the vectors vj form a partition of (1, . . . , 1) of length ρ.
In particular, they form up to reordering the reduced echelon basis of the vector
subspace

V := 〈v1, . . . , vρ〉 ⊂ Ks

that they generate over K (in fact over any field). Hence, solving recombinations
mainly reduces to find a system of K-linear equations that determine V ⊂ Ks.

Let µ = (µ1, . . . , µs) ∈ Ks. Applying the logarithmic derivative with respect to
y to (14) and multiplying by F we get

(15) µ ∈ V ⇐⇒ ∃α1, . . . , αs ∈ K |
s∑
i=1

µiF̂i∂yFi =

s∑
j=1

αjF̂j∂yFj ,

with notations F̂j = F/Fj and F̂i = F/Fi. The reverse implication holds since the
Fj ’s are supposed to be separable [13, Lemma 1]. In [11], the author show how to
derive from (15) a finite system of linear equations for V that depends only on the
Fi’s truncated with x-adic precision dx + 1, assuming F (0, y) separable of degree d.
For our purpose, we will rather consider vλ-adic truncation of the Fi’s for a suitable
λ, under the weaker hypothesis that F is non degenerated.

3.2. Residues and recombinations. In what follows, we fix λ = m/q ∈ Q. Given
G ∈ K((x))[y] and σ ∈ Q, the vλ-truncation of G with precision σ is

[G]σλ :=
∑

j+iλ≤σ

gijx
jyi ∈ K[x±1][y].

If λ = 0, this is the classical Gauss (or x-adic) truncation [G]σ0 = G mod xσ+1. If
G ∈ K[x, y], we can define the λ-degree of G,

dλ(G) := max(j + iλ, gij 6= 0).

Note that G = [G]
dλ(G)
λ . Moreover, we have

dλ(GH) = dλ(G) + dλ(H) and dλ(G+H) ≤ dλ(G) + dλ(H).
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Let µ ∈ Fr. Given the factorization (13), we let

(16) Gµ :=

s∑
i=1

µi
[
F̂i∂yFi

]dλ(F )

λ
∈ K[x, y].

We denote by ρk = ρk(µ) the residues of Gµ/F at the roots yk ∈ K(x) of F , that is

ρk :=
Gµ(x, yk)

∂yF (x, yk)
∈ K(x), k = 1, . . . , d = degy(F ).

These residues are well defined since F is separable. The next key result is mainly
a consequence of [24, Prop 8.7]:

Proposition 10. Suppose that F is not degenerated. Then µ ∈ V if and only if
ρk ∈ K for all k = 1, . . . , d.

Proof. The direct implication follows from (15). Let us prove the converse, as-
suming that the residues ρk are constant. Let τ = τλ as defined by (4). Given
Q ∈ K((x))[y], we denote for short

τ0(Q) = x−v0(τ(Q))τ(Q) ∈ K[[x]][y].

Hence τ0(F ) ∈ K[x, y] is a primitive polynomial with primitive factors τ0(Fj) in
K[x, y] and τ0(Fi) in K[[x]][y]. Following (5), we get

n := degx(τ0(F )) = q(dλ(F )− vλ(F )).

The operators τ0 and ∂y commute and it’s straightforward to check that

τ0(Gµ) =

r∑
i=1

µi
[
τ0(̂Fi)∂yτ0(Fi)

]n
0
.

In other words, τ0(Gµ) coincides with the polynomial defined by (16) when consid-
ering the recombinations of the analytic factors τ0(Fi) of τ0(F ) using the Gauss val-
uation v0. Let φk(x) := x−myk(xq). We have τ0(F )(x, φk(x)) = F (xq, yk(xq)) = 0
for all k so τ0(F ) has roots φ1, . . . , φd. Moreover,

τ0(Gµ)(x, φk(x))

∂yτ0(F )(x, φk(x))
=

Gµ(xq, yk(xq))

∂yF (xq, yk(xq))
= ρk(xq) ∈ K,

so the residues of τ0(Gµ)/τ0(F ) at the roots of τ0(F ) are constant by assumption.
Since F is separable and not degenerated, so is τ0(F ). Thus, we can apply [24, Prop
8.7] to τ0(F ) and we deduce that τ0(Gµ) is a K-linear combination of the polyno-

mials τ0(̂Fj)∂yτ0(Fj), which in turns implies that Gµ is a K-linear combination of

the polynomials F̂j∂yFj . Hence µ ∈ V thanks to (15), as required. �

Remark 8. The assumption F not degenerated is crucial to solve recombinations
with vλ-precision dλ(F ). Otherwise, we might need to compute the Fi’s with a
higher precision. We refer the reader to [24] for various options to solve the recom-
bination problem for arbitrary polynomials in the x-adic case.
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3.3. Computing equations for V . Since F is separable, ρk belongs to the sepa-
rable closure of K(x) and we can talk about the derivative of ρk. Hence, an obvious
necessary condition for that ρk ∈ K is that its derivative vanishes. More precisely,
we have the following lemma:

Lemma 12. Let p ≥ 0 be the characteristic of K. If ρ′k = 0 then ρk ∈ K(xp). If

moreover p = 0 or p ≥ 2d(dλ(F )− vλ(F )), then ρk ∈ K.

Proof. If ρ′k = 0, then clearly ρk ∈ K(xp). If p = 0, the claim follows. If p > 0, we
consider the polynomial τ0(F ) defined above, of x-degree n = q(dλ(F )−vλ(F )). Its

residue is ρk(xq) which thus lives in K(xpq). Hence, it’s straightforward to check
that we can divide the bound p ≥ 2dn of [8, Lemma 2.4] by q in this context. �

Let us consider the K-linear operator

(17)
D : K(x)[y] −→ K(x)[y]

G 7−→
(
GxFy −GyFx

)
Fy −

(
FxyFy − FyyFx

)
G,

with the standard notations Fy, Fxy, etc. for the partial derivatives.

Lemma 13. We have ρ′k = 0 for all k = 1, . . . , d if and only if F divides D(Gµ)
in the ring K(x)[y].

Proof. Combining ρk(x) =
Gµ(x,yk)
Fy(x,yk) and y′k(x) = −Fx(x,yk)

Fy(x,yk) , we get

ρ′k(x) =
D(Gµ)(x, yk)

F 3
y (x, yk)

.

Thus ρ′k = 0 if and only if D(Gµ) vanishes at all roots of F , seen as a polynomial
in y. The result follows since F is separable. �

Let us denote Dµ := D(Gµ) for short. We will need the following lemma:

Lemma 14. Suppose λ ≥ 0. Then 3vλ(F ) ≤ vλ(Dµ) and dλ(Dµ) ≤ 3dλ(F ).

Proof. For any Q ∈ K[x, y], the support of xQx and yQy is contained in the support
of Q. Hence vλ(Q) ≤ vλ(xQx) and vλ(Q) ≤ vλ(yQy) while dλ(Q) ≥ dλ(xQx) and
dλ(Q) ≥ dλ(yQy). As vλ(x) = dλ(x) = 1 and dλ(y) = vλ(y) = λ ≥ 0, we get

(18) vλ(Qx), vλ(Qy) ≥ vλ(Q) and dλ(Qx), dλ(Qy) ≤ dλ(Q).

In particular, we get from (16) that vλ(Gµ) ≥ vλ(F ). On the other hand we have
dλ(Gµ) ≤ dλ(F ) by the very definition (16). The claim then follows from (17),
using moreover that vλ and −dλ are valuations. �

Lemma 13 suggests to compute the vλ-adic euclidean division of Dµ by F up
to a sufficient precision to test divisibility in K(x)[y]. A difficulty is that F is not
necessarily λ-monic, hence we do not have access to Proposition 4. To solve this
issue, we adapt [24, Section 5] to our context. We get:

Proposition 11. Given F1, . . . ,Fs with relative λ-precision dλ(F )−vλ(F ), we can
compute a linear map

φ : Ks → KN , N ∈ O(d(dλ(F )− vλ(F )))

such that µ ∈ ker(φ) ⇐⇒ F |Dµ, and so with at most Õ(sN) operations in K.
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Proof. Up to replace F and D(Gµ) by their reciprocal polynomial, we may suppose
that λ ≥ 0 by Lemma 4. Note first that Gµ only depends on the Fi’s with relative
λ-precision dλ(F )− vλ(F ) by (18) and Lemma 11. Let 0 ≤ α < q and k ∈ Z be the

unique integers such that F̃ := τ(xkyαF ) satisfies

(19) q|degy(F̃ ) = d+ α and 0 ≤ v0(F̃ ) < q.

These conditions ensure that both F̃ and its leading coefficient c := lcy(F̃ ) lie in

the subring Bλ ⊂ K[x, y] (Lemma 1). Let k′ = k − 2vλ(F ) and D̃µ := τ(xk
′
yαDµ).

Note that F divides Dµ in K(x)[y] if and only if F̃ divides D̃µ in K(x)[y]. Moreover,

k′ does not depend on µ so the map µ 7→ D̃µ is K-linear.

Claim. We have v0(D̃µ) ≥ v0(F̃ ) and degx(D̃µ) ≤ 3 degx(F̃ ).

Proof of the claim. As λ ≥ 0, Lemma 14 and v0(τ(Q)) = qvλ(Q) give

v0(D̃µ) = q(k′ + αλ+ vλ(Dµ) ≥ q(k + αλ+ vλ(F )) = v0(F̃ ) ≥ 0.

In a similar way, using now degx(τ(Q)) = qdλ(Q), we get

degx(D̃µ) ≤ q(k′ + αλ+ 3dλ(F ))

= 2q(dλ(F )− vλ(F )) + q(k + αλ+ vλ(F ))

= 2(degx(F̃ )− v0(F̃ )) + degx(F̃ )

≤ 3 degx(F̃ ). �

As 0 ≤ v0(F̃ ) ≤ v0(D̃µ), F̃ divides D̃µ in K(x)[y] if and only if it divides D̃µ in
K[x][y] by Gauss Lemma. To reduce to the monic case, we localize K[x] at some

prime a ∈ K[xq] coprime to c := lcy(F̃ ). The euclidean division

(20) D̃µ = QµF̃ +Rµ ∈ K[x](a)[y]

is now well defined. Any Q ∈ Bλ ⊂ K[x, y] has a unique a-adic expansion

(21) Q =

bdeg(Q)/ deg(a)c∑
i=0

qi(x, y)a(x)i, with qi ∈ Bλ and degx qi < deg a.

Note that qi ∈ Bλ since a ∈ Bλ. Let
{
Q
}n
m

=
∑n
i=m qia

i and
{
Q
}n

=
{
Q
}n

0
.

Since degx(D̃µ) ≤ 3 degx(F̃ ), we deduce from (the proof of) [24, Lemma 5.2] that

F̃ divides G̃ if and only if{
Qµ
}n
m

=
{
Rµ
}n

= 0, with m :=
⌊ 2dx

deg a

⌋
+ 1 and n :=

⌈ 3dx
deg a

⌉
,

where dx = degx(F̃ ). We have dx = q(dλ(F ) − vλ(F )) by (19). Since both poly-
nomials {Qµ}nm and {Rµ}n live in Bλ, we deduce that their supports have size
O(d(dλ(F )− vλ(F ))). The linear map

φ(µ) := ({Qµ}nm/am, {Rµ}n)

thus satisfies the conditions of Proposition 11. Let us look at complexity issues. If
Q1, Q2 ∈ Bλ have x-degrees O(dx) and relative y-degrees degy(Qi)−vy(Qi) ∈ O(d),

we compute {Q1}n, {Q2}n and {Q1Q2}n in time Õ(ddx/q) thanks to Proposition
1 since all operations in (21) take place in Bλ. We have c ∈ K[xq] ⊂ Bλ invertible

modulo a, and computing {c−1}n costs Õ(dx/q). Then, adapting the proof of
Proposition 2 in the a-adic case, we compute (20) with a-adic precision n and

thus φ(µ) in time Õ(ddx/q) = Õ(d(dλ(F ) − vλ(F ))). To build the matrix of φ,
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we compute φ(µi) where the µi’s run over the canonical basis of Ks. Given the

Fi’s with relative λ-precision dλ(F )−vλ(F ), computing Gµi =
[
F̂i∂yFi

]dλ(F )

λ
costs

Õ(d(dλ(F ) − vλ(F )) thanks to Corollary 5. Summing over all i = 1, . . . , s, we get
the result. �

Remark 9. We need to compute a ∈ K[xq] coprime to c. As a = a0(xq) and
c = c0(xq), we look for a0 coprime to c0. We have degx(c0) ≤ dx/q = dλ(F )−vλ(F ).
If Card(K) ≥ dλ(F )−vλ(F ), we use multipoint evaluation of c0 at degx(c0) distinct
elements of K to find z ∈ K such that c0(z) 6= 0, and we take a(x) = xq − z.
Otherwise, we follow a similar strategy in a finite extension of K, considering now
a = a0(xq), with a0 the minimal polynomial of z over K. The cost fits in the aimed
bound.

Corollary 9. If K has characteristic zero or greater than 2d(dλ(F )− vλ(F )) and
F is non degenerated, then (v1, . . . , vρ) is the reduced echelon basis of ker(φ).

Proof. Follows from Proposition 10, Lemma 12, Lemma 13 and Proposition 11. �

If K has small characteristic p, we need extra conditions to ensure ρk ∈ K̄.
These conditions rely on linear algebra over the prime field Fp of K. They are
based on Niederreiter’s operator, which was originally introduced for univariate
factorization over finite fields [14], and used then for bivariate factorization in [11].
We deliberately do not go into the details here. We assume λ ≥ 0. We introduce
the following Fp-linear map:

ψ : ker(φ|Fsp) −→ K[xp, yp]pdλ,p(d−1)

µ 7−→ Gpµ − ∂p−1
y (GµF

p−1).

In contrast to [11], the subscripts indicate the λ-degree and the y-degree.

Proposition 12. The map ψ is well-defined and (v1, . . . , vρ) is the reduced echelon
basis of ker(ψ).

Proof. We check that ∂y(ψ(µ)) = 0, so ψ(µ) is a polynomial in yp of y-degree
p(d − 1). Since dλ(Qy) ≤ dλ(Q) (proof of Lemma 14), ψ(µ) has λ-degree at most

pdλ. Since moreover µ ∈ ker(φ), we have ρk ∈ K(xp) by Lemma 12 and Proposition
11, which forces ψ(µ) to be a polynomial in xp (see [11, Lemma 4]). Hence ψ is
well-defined. If λ = 0, the second claim follows from [11, Proposition 2] . If λ 6= 0,
we reason as in the proof of Proposition 10, passing through the polynomials τ0(F )
and τ0(Gµ) to reduce to the case λ = 0 (using again that ∂y and τ0 commute). �

Proposition 13. Denote N = d(dλ(F )− vλ(F )). Assume F ∈ K[x, y] non degen-
erated. Given F1, . . . ,Fs with relative λ-precision dλ(F )− vλ(F ), we can solve the
recombination problem with

(1) Õ(sN) +O(sω−1N) operations in K if p = 0 or p ≥ 2N ,
(2) O(ksω−1N) operations in Fp if K = Fpk .

Proof. We can compute the reduced echelon basis of the kernel of a matrix of size
s × N with coefficient in a field L with O(sω−1N) operations in L [19, Theorem
2.10]. Hence, the first point follows from Proposition 10 and Corollary 9. Suppose
that K = Fpk . Thus K is an Fp-vector space of dimension k and it follows again
from Proposition 10 that we can build the matrix of φ|Fsp and compute a basis of

its kernel over Fp in the aimed cost. To build the matrix of ψ we reason again with
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the polynomials τ0(F ) and τ0(Gµ) to reduce to the case λ = 0, using that ∂y and
τ0 commute. We apply then [11, Proposition 13], using again that the complexity
can be divided by q since we work in the sparse subring Bλ ⊂ K[x, y] (in the non
monic case, we localize at some a ∈ K[xq] as in the proof of Proposition 10). The
resulting complexity fits in the aimed cost. The matrix of ψ having size at most
s× kN over Fp, we conclude. �

3.4. Proof of Theorem 1 and Corollary 1. The key point is to choose a good
slope λ before applying Proposition 13. Let F ∈ K[x, y] of y-degree d with Newton
polygon N(F ) and lower convex hull Λ(F ). Let V = Vol(N(F )).

Lemma 15. Let λ := λF be the average slope of Λ(F ) (Definition 8). Assume that
y does not divide F . Then

V ≤ d(dλ(F )− vλ(F )) ≤ 2V.

Proof. It is a similar proof as that of Proposition 8. Consider the bounding paral-
lelogram ABCD of N(F ) with two vertical sides and two sides of slope −λ (figure 5
below). We have Vol(ABCD) = d(dλ(F )− vλ(F )) which gives the first inequality.
Consider I and J the left and right end points of Λ(F ) and let K ∈ [BC] ∩N(F )
and L ∈ [AD] ∩N(F ). Then

V ≥ Vol(IJK) + Vol(IJL) =
Vol(IBCJ)

2
+

Vol(IADJ)

2
=

Vol(ABCD)

2
,

the inequality since IJK and IJL are contained in N(F ), and the first equality
since (IJ) is parallel to (AD) and (CD) by choice of λ = λF . The result follows. �

Figure 5. Proof of Lemma 15. In dark blue the polygon N(F )
and in light blue its bounding parallelogram of slope λF .
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Previous results lead to algorithm Factorization below.
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Algorithm: Factorization(F )

Input: F ∈ K[x, y] primitive, separable in y and non degenerated.
Output: The irreducible factorization of F over K

1 if y divides F then L = [y] and F ← F/y else L← [ ];

2 λ← λF and σ ← dλ(F )− vλ(F ) +mλ(F );

3 [F1, . . . ,Fs]← Facto(F, λ, σ);

4 if s = 1 then return L;

5 Compute the reduced echelon basis (v1, . . . , vρ) of V using Proposition 13;

6 for j = 1, . . . , ρ do

7 Compute F̃j := [lcy(F )
∏s
i=1 F

vji
i ]

dλ(F )
λ ;

8 Compute the primitive part Fj of F̃j with respect to y

9 return L ∪ [F1, . . . , Fρ]

Proposition 14. Algorithm Factorization is correct. Up to the cost of univariate
factorizations, it takes at most

(1) Õ(sV ) +O(sω−1V ) operations in K if p = 0 or p ≥ 4V ,
(2) O(ksω−1V ) operations in Fp if K = Fpk .

Proof. By Theorem 3, Step 3 computes the Fi’s with relative λ-precision at least
dλ(F ) − vλ(F ). Thus, Proposition 13 and Lemma 15 ensure that the vj ’s at step
5 are solutions to the recombination problem (11). Since F is primitive, so are the

Fj ’s. Since dλ(lc(F )/ lc(Fj)) + dλ(Fj) ≤ dλ(F ) we have F̃j = lc(F )
lc(Fj)

Fj so Fj is the

primitive part of F̃j . Hence the algorithm returns a correct answer. Since mλ(F ) ≤
dλ(F )− vλ(F ) (Definition 6), we have σ ≤ 4V/d by Lemma 15. Hence step 3 costs

Õ(V ) by Theorem 3. Step 5 fits in the aimed bound by Proposition 13 and Lemma

15. Using technique of subproduct trees, step 7 costs Õ(d(dλ(F )− vλ(F )) = Õ(V )
by Corollary 5, and computing primitive parts at step 8 has the same cost. This
concludes the proof. �

Proof of Theorem 1. It follows immediately from Proposition 14 since s is smaller
or equal to the lower lattice length r of N(F ). Note that testing non degeneracy
amounts to test squarefreeness of some univariate polynomials whose degree sum
is r, hence costs only Õ(r) operations in K. �

Proof of Corollary 1. The corollary follows straightforwardly from Theorem 1.
However, let us explain for the sake of completeness how to compute quickly the
minimal lower lattice length r0(F ) = r0(N(F )). Recall from (1) that for a lattice
polygon P ,

r0(P ) = min{r(τ(P )), τ ∈ Aut(Z2)}
where r(τ(P )) stands for the lattice length of the lower convex hull Λ(τ(P )), and
Aut(Z2) stands for the group of affine automorhisms.

Lemma 16. Let P be a lattice polygon, with edges E1, . . . , En. Denote wi ∈ Z2

the inward orthogonal primitive vector of Ei. There exist τi, τ
′
i ∈ GL2(Z) with

det(τi) = 1 and det(τ ′i) = −1 and such that τi(wi) = τ ′i(wi) = (1, 0). Then

r0(P ) = min (r(τ1(P )), r(τ ′1(P )), . . . , r(τn(P )), r(τ ′n(P ))) .



IMPROVEMENTS OF CONVEX-DENSE FACTORIZATION OF BIVARIATE POLYNOMIALS25

Geometrically, the maps τi and τ ′i simply send Ei to a vertical left hand edge. Such
maps are straightforward to compute (note that they are not unique).

Proof. Since the lower lattice length is invariant by translation, it’s sufficient to
look for a map τ ∈ GL2(Z) that reaches r0. Let us first consider τ ∈ GL2(R).
Consider the set Iτ = {j, τ(Ej) ⊂ Λ(τ(P )} of the indices of the lower edges of
τ(P ). Denoting dj(τ) = det((1, 0), τ(wj)), we have

j ∈ Iτ ⇐⇒ dj(τ) > 0.

The maps τ 7→ dj(τ) being continuous, we deduce that Iτ ⊂ Iτ ′ for all τ ′ ∈ GL2(R)
close enough to τ , and with equality Iτ = Iτ ′ if dj(τ) 6= 0 for all j = 1, . . . , n.
Obviously, if τ, τ ′ ∈ GL2(Z) then Iτ ⊂ Iτ ′ implies r(τ(P )) ≤ r(τ ′(P )) and equality
Iτ = Iτ ′ implies equality of the lower lattice lengths. It follows that r0 is reached at
τ ∈ GL2(Z) such that di(τ) = 0 for some i (such a τ exists for each i). This forces
τ(wi) = ±(1, 0) and we may suppose τ(wi) = (1, 0) since the lower lattice length is
invariant by vertical axis symmetry. But if τ ′ ∈ GL2(Z) is another map such that
τ ′(wi) = (1, 0) and which satisfies moreover det(τ) = det(τ ′), then

dj(τ
′) = det(τ ′(wi), τ

′(wj)) = det(τ ′) det(wi, wj) = det(τ) det(wi, wj) = dj(τ)

for all j = 1, . . . , n, from which it follows that Iτ = Iτ ′ , hence r(τ(P )) = r(τ ′(P )).
The lemma follows. �
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