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In this presentation, we report on new complexity results about the resolution of singularities
of plane curves, obtained in collaboration with Adrien Poteaux in [9] and [10]. Let C be an
absolutely irreducible algebraic plane curve defined over a perfect field K of characteristic 0
or greater than d = deg(C). We will sketch the proof of the following result [9, Cor. 1] :

Theorem 1. There exists an algorithm which computes the geometric genus of C with an
expected Õ(d3) arithmetic operations over K.

If K = Q, we can use a criterion of good reduction modulo p [7] and derive a Las Vegas
algorithm for the genus running with an expected bit complexity Õ(d3(h + 1)) where h
stands for the logarithmic height of a polynomial equation of C over Q (similar results stand
over arbitrary number fields, see [9]). Our approach uses Puiseux series. There exist other
algorithms for the genus, using for instance linear differential operators [2, 3] or topological
methods [5] (for complex curves). To our knowledge, none of these methods have been
proved to provide a better complexity than that of Theorem 1.

The proof of Theorem 1 is based on a fast Newton-Puiseux type algorithm. If F ∈ K[[x]][y]
is a square-free polynomial defined over a perfect field K of characteristic 0 or greater than
d = deg(F ), the roots of F in K((x)) may be represented as fractional Puiseux series. Com-
puting these Puiseux series is an important algorithmic issue related to algebraic curves with
various applications (resolution of singularities, integral basis of function fields, Riemann-
Roch spaces, monodromy, factorization, geometric modeling, etc). An important fact in our
context is that the singular parts of the Puiseux series (obtained after truncation up to a suit-
able power of x) contain the classical numerical invariants attached to the singular germs of
plane curve defined by F along the line x = 0. In particular, they determine their equisingu-
larity type, which is the main notion of equivalence for plane curve singularities introduced
by Zariski in the 60’s. Denoting δ the x-valuation of the discriminant of F , we prove [9,
Thm.1]:

Theorem 2. There exists an algorithm which computes the singular parts of the Puiseux
series of F with an expected Õ(dδ) arithmetic operations over K.



When compared to the Newton-Puiseux type algorithms of Duval [4] and Poteaux-Rybowicz
[7, 8], the new idea behind the proof of Theorem 2 is to use a divide and conquer strategy.
To this aim, we use suitable sharp truncation bounds (updated at each step of the algorithm)
combined with a generalization of the classical Hensel lifting. Also, we need to rely on
dynamic evaluation in order to avoid to perform too many univariate irreducibility tests (this
task is too costly over characteristic zero fields and might be too costly also for finite fields
when computing the Puiseux series above critical points with high algebraic degree over K).
Theorem 1 then follows from Theorem 2 by computing the singular parts of the Puiseux series
of the polynomial defining C above all critical points of a suitable projection C → P1, and
by applying eventually the Riemann-Hurwitz formula. We can derive also from Theorem 2
a quasi-optimal factorization algorithm in K[[x]][y], which has a special interest with regards
to the irreducible decomposition of algebraic plane curves [11].

Theorem 2 leads in particular to an irreducibility test in K[[x]][y] running with complexity
Õ(dδ). If time permits, I will present an algorithm which allows to get rid of the d factor.
Keeping hypothesis of Theorem 2, we prove the following result [10, Thm.1]:

Theorem 3. We can test if F is irreducible in K[[x]][y] with Õ(δ+ d) operations over K and
at most two degree d univariate irreducibility tests over K.

If F is Weirestrass, the complexity drops to Õ(δ) and one univariate irreducibility test. If
F is given as a dense bivariate polynomial in K[x, y], the complexity is quasi-linear with
respect to the arithmetic size of the input. This algorithm is of a different nature than the
algorithm of Theorem 2, as we do not use here the usual monomial transforms (blow-ups) and
shifts inherent to the Newton-Puiseux type algorithms. We rather generalize Abhyankhar’s
irreducibility criterion [1] to the case of non algebraically closed residue fields. The main
idea is to detect the irreducibility of F on its Ψ-adic expansion, where Ψ = (ψ0, . . . , ψk) is
the collection of some well chosen approximate roots of F that we update at each step of the
algorithm.

Remark. The three algorithms described above are purely symbolic. They are completely
deterministic except for the use of a Las Vegas subroutine for computing primitive elements in
the various residue fields extensions, thus avoiding to deal with towers of algebraic extensions
of K. However, thanks to the recent preprint [6], we expect that they become deterministic
up to substituting d by d1+o(1) in our complexity estimates. Theorem 1 provides a worst-case
complexity bound which is equivalent (up to a logarithmic factor) to the computation of the
discriminant of a degree d bivariate polynomial, and improving this complexity would be a
major breakthrough in Computer Algebra. However, this provides for the moment only a the-
oretical result : our algorithm is a combination of many subroutines, and the implementation
of a fast efficient version would require a huge amount of work, especially due to the dynamic
evaluation part. We are currently investigating alternative algorithms based on approximate
roots which are easier to implement.
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