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Abstract

In the spirit of a theorem of Wood [16], we give necessary and
sufficient conditions for a family of germs of analytic hypersurfaces in
a smooth projective toric variety X to be interpolated by an algebraic
hypersurface with a fixed class in the Picard group of X.

1 Introduction

Let X be a compact algebraic variety over C. We are interested by the
following problem:
Let V1, . . . , VN be a collection of germs of smooth analytic hypersurfaces
at pairwise distincts smooth points p1, . . . , pN of X, and fix α in the Picard
group Pic(X) of X. When does there exist an algebraic hypersurface Ṽ ⊂ X
with class α containing all the germs Vi ?
A natural way to approach this problem is to study sums and products of
values of rational functions at points of intersection of the germs Vi with a
”moving” algebraic curve1.
Let us recall a theorem of Wood [16] treating the case of N germs in an affine
chart Cn of X = Pn, transversal to the line l0 = {x1 = · · · = xn−1 = 0}.
Any line la close to l0 has affine equations xk = ak0+ak1xn, k = 1, . . . , n−1.
The trace on V = V1∪· · ·∪VN of any function f holomorphic in an analytic
neighborhood of V is the function

a 7−→ TrV (f)(a) :=
∑

p∈V ∩la

f(p) ,

defined and holomorphic for a = ((a10, a11), . . . , (an−1,0, an−1,1)) close enough
to 0 ∈ C2n−2.

Theorem 1 (Wood, [16]) There exists an algebraic hypersurface Ṽ ⊂ Pn

of degree N which contains V if and only if the function a 7→ TrV (xn)(a) is
affine in the constant coefficients a0 = (a10, . . . , an−1,0).

1This philosophy has been initiated by Abel in his studies of abelian integrals [1].
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We show here that Theorem 1 has a natural generalization to germs
V1, . . . , VN in general position in a smooth toric compactification X of Cn

endowed with an ample line bundle. As in [16], our proof gives an explicit
construction of the polynomial equation of the interpolating hypersurface in
the affine chart Cn. Moreover, we characterize the class of Ṽ in Pic(X).
On any projective variety X, there exist very ample line bundles L1, . . . , Ln−1

and a global section s0 ∈ Γ(X, L1)⊕ · · · ⊕ Γ(X, Ln−1) whose zero locus is a
smooth irreducible curve C which intersects transversally each germ Vi at
pi. A generic point a in the associated parameter space

X∗ := P(Γ(X, L1))× · · · × P(Γ(X,Ln−1))

determines a smooth closed curve Ca in X, which, for a close enough to the
class a0 ∈ X∗ of s0, intersects each germ Vi transversally at a point pi(a)
whose coordinates vary holomorphically with a by the implicit functions
theorem. For any function f holomorphic at p1, . . . , pN , we define the trace
of f on V := V1 ∪ · · · ∪ VN relatively to (L1, . . . , Ln−1) as the function

a 7−→ TrV (f)(a) :=
N∑

i=1

f(pi(a)),

which is defined and holomorphic for a in an analytic neighborhood of a0.

Let us suppose now that X is a toric projective smooth compactification
of U = Cn, endowed with a linear action of an algebraic torus T that pre-
serves the coordinate hyperplanes xi = 0, i = 1, . . . , n (see [6]). Trivially
any germ Vi contained in the hypersurface at infinity X \ U is algebraic.
We can thus suppose that V is contained in U and work with the affine
coordinates x = (x1, . . . , xn).

Since U ' Cn, its Picard group is trivial and the classes of the irreducible di-
visors G1, . . . , Gs supported outside U form a basis for Pic(X). Any globally
generated line bundle L on X has thus a unique global section sU ∈ Γ(X, L)
such that div(sU )∩U = ∅. If s ∈ Γ(X, L), the quotient s

sU
defines a rational

function without poles on U ' Cn, that is a polynomial in x, which gives
the local equation for the divisor H = div(s) in the affine chart U . Since L
is globally generated, a generic section s ∈ Γ(X, L) does not vanish at 0 ∈ U
and the corresponding polynomial in x has a non-zero constant term.
In our situation of very ample line bundles L1, . . . , Ln−1 on X, we can thus
use polynomials equations for Ca restricted to the affine chart U :

Ca ∩ U = {x = (x1, . . . , xn) ∈ U, ak0 = Pk(a′k, x), k = 1, . . . , n− 1},
where ak = (ak0, a

′
k) and Pk(a′k, .) are polynomials in x vanishing at 0 ∈ U .

Since X is toric, we know from [8] that the Chow groups Ak(X) are isomor-
phic to the cohomology groups H2n−2k(X,Z), for any k = 0, . . . , n, and we

2



can identify the Chow group A0(X) of 0-cycles with Z ' H2n(X,Z). We
note [V ] the class of any closed subvariety V of X, c1(L) ∈ H2(X,Z) the
first Chern class of any line bundle L on X, and we denote by a the usual
cap product. Our first result is

Theorem 2 The set V := V1 ∪ · · · ∪ VN is contained in an algebraic hyper-
surface Ṽ ⊂ X such that

[Ṽ ] a
n−1∏

k=1

c1(Lk) = N

if and only if for all i = 1, . . . , n the functions a 7→ TrV (xi)(a) are affine in
the constant coefficients a0 = (a10, . . . , an−1,0).

In the general case, none of the germs Vi has a tangent space at pi equal to
xn = 0, in which case the condition “TrV (xn) affine in a0” is sufficient for
Theorem 2 to hold.
If the conditions of Theorem 2 are not satisfied, V can nevertheless be con-
tained in an hypersurface Ṽ of X such that [Ṽ ] a

∏n−1
k=1 c1(Lk) > N . In

that case, traces of affine coordinates are algebraic in a0 and no longer poly-
nomials. Let us mention the following toric Abel-inverse theorem obtained
in [14], chapter 2, as a corollary of Theorem 2, generalizing results of [11]
and [15]:

Theorem 3 Let φ be a holomorphic form of maximal degree on V , given by
φi on the germ Vi, for i = 1, . . . , N . There exist an algebraic hypersurface
Ṽ ⊂ X containing V such that [Ṽ ] a

∏n−1
k=1 c1(Lk) = N , and a rational form

Ψ on Ṽ such that Ψ|Vi
= φi for i = 1, . . . , N , if and only if the trace form

TrV φ(a) :=
∑N

i=1 p∗i (φi)(a) is rational in a0.

Contrary to the projective case handled in [16], Theorem 2 does not char-
acterize the class of Ṽ . To do so, we introduce the norm on V relatively to
(L1, . . . , Ln−1) of any function f holomorphic at p1, . . . , pN ,

a 7−→ NV (f)(a) :=
N∏

i=1

f(pi(a)),

which is defined and holomorphic for a ∈ X∗ close to a0. We then study
the degree in a0 of norms of some rational functions on X whose polar
divisors generate PicQ(X). As in [15], let us fix very ample effective divisors
E1, . . . , Es supported by X \ U , whose classes form a Q-basis of PicQ(X).
We can now characterize the class of the interpolating hypersurface :
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Theorem 4 Suppose that conditions of Theorem 2 are satisfied. Then the
equality [Ṽ ] = α ∈ Pic(X) holds if and only if there exist rational functions
fj ∈ H0(X,OX(Ej)) for j = 1, . . . , s, whose norms NV (fj) are polynomials
in a10 of degree exactly

dega10 NV (fj) = α · [Ej ] a
n−1∏

k=2

c1(Lk) ∈ Z≥0.

Note that Bernstein’s theorem [3] allows to compute the degrees of intersec-
tion in Theorems 2 and 4 as mixed volume of the polytopes associated (up
to translation) to the involved line bundles.
If X = Pn, then Pic(X) ' Z and Theorem 4 follows from Theorem 2 : if
TrV (xn) is affine in a0, then NV (xn) has degree N in a0.

The proof of theorem 2 uses a toric generalization of Abel-Jacobi’s the-
orem [12] which gives combinatorial conditions for the vanishing of sums
of Grothendieck residues of rational forms in toric varieties, which can be
interpreted in term of affine coordinates.

The difficulty to generalize Theorem 2 for other compactifications X of Cn,
as grassmannians or flag varieties, is that there is no natural choice for affine
coordinates, so a priori no grading for the algebra of regular functions over
U = Cn naturally associated to X (interpolation results in grassmannians
would be important for generalizing Theorem 2 to any projective variety X
and to union of germs of any dimension k ≤ n− 1, by using a grassmannian
embedding of X associated to an adequat rank k ample bundle E on X).
We can hope a generalization to the case of non-projective toric varieties,
using blowing-up and essential families of globally generated line bundles,
as presented in [14] (chapter 2, section 2).

Section 2 is devoted to the proof of Theorem 2, and Section 3 to the
proof of Theorem 4.

This article is extracted from my thesis [14], untitled “La trace en
géométrie projective et torique”, which is disponible on my home page
http://www.math.u-bordeaux.fr/∼weimann/.

2 Proof of Theorem 2

2.1 Direct implication

Let us suppose that V is contained in an algebraic hypersurface Ṽ whose
equation in the affine chart U is given by a polynomial f ∈ C[x1, . . . , xn].
Since the line bundles L1, . . . , Ln−1 are very ample, the hypothesis on the
degree of intersection is equivalent to that for a near a0, the intersection
Ṽ ∩Ca is contained in U and equal to V ∩Ca. As explained in the introduction
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of [15], the trace of any coordinate xi on V relatively to (L1, . . . , Ln−1) is
equal for a close to a0 to the sum of Grothendieck residues of the rational
n-form on U

xidf ∧ dP1 · · · ∧ dPn−1

f(x)(a10 − P1(a′1, x)) · · · (an−1,0 − Pn−1(a′n−1, x))
,

which we denote, as in [2], by

TrV (xi)(a) = Res
[

xidf ∧ dP1 · · · ∧ dPn−1

f, a10 − P1, . . . , an−1,0 − Pn−1

]
.

Following [5] or [15], the integral representation for the global sum of Grothendieck
residues allows us to derivate the trace according to ak0 under the integral:

∂(l)
ak0

TrV (xi)(a) = Res

[
(−1)l l! x1 · · ·x2

i · · ·xn
df∧dP1···∧dPn−1

x1···xn

f, a10 − P1, . . . , (ak0 − Pk)l+1, . . . , an−1,0 − Pn−1

]
.

If h, f1, . . . , fn are Laurent polynomials in t = (t1, . . . , tn) with Newton
polytopes P, P1, . . . , Pn, the toric Abel-Jacobi theorem [12] asserts that

Res
[
hdt1···∧dtn

t1···tn
f1, . . . , fn

]
= 0

as soon as P is contained in the interior of the Minkowski sum P1 + · · ·+Pn.
Since Lk is very ample, the support of the polynomial Pk is n-dimensional
and it is not hard to check that the Newton polytope of the jacobian of the
map (f, P1, . . . , Pn−1) translated via the vector (1, . . . , 2, . . . , 1) (correspond-
ing to multiplication by x1 · · ·x2

i · · ·xn) is stricly contained in the Minkowski
sum of the Newton polytopes of polynomials f, a10 − P1, . . . , an−1,0 − Pn−1

for l ≥ 2. This shows direct part of Theorem 2.

Remark 1 In general, traces of coordinate functions do not depend of a0. If
Rk is the unique divisor in |Lk| supported outside U , the previous argument
yields the implication

h ∈ H0(X,OX(dRk)) ⇒ degak0
TrV (h) ≤ d

with equality if the zero set of h has a proper intersection with X \U (which
is generically the case since Lk is globally generated). See [14], Corol. 3.6
p 127.

2.2 Converse implication

Let us show that TrV (xi) being affine in a0 implies that TrV (xl
i) is polyno-

mial of degree at most l in a0 for any l ≥ 1. We need an auxiliary lemma
generalizing to the toric case the “Wave-shock equation” used in [11] to show
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the Abel-inverse theorem. We give a weak version of this lemma, which will
be sufficient for our purpose. See [14], prop. 3.8 p 128, for a stronger version.

For a near a0, we use affine coordinates (x(j)
1 (a), . . . , x(j)

n (a)) for the unique
point of intersection pj(a) of Vj with Ca. Since Lk is very ample, the mono-
mial xi occurs in the polynomial Pk with a generically non zero coefficient
aki, for i = 1, . . . , n.

Lemma 1 For any i ∈ {1, . . . , n}, and any j ∈ {1, . . . , N}, the function
a 7→ x

(j)
i (a) (holomorphic at a0) satisfies the following P.D.E:

∂aki
x

(j)
i (a) = x

(j)
i ∂ak0

x
(j)
i (a)

for any k = 1, . . . , n− 1 and any a close to a0.

Proof. Let us fix i = 1 for simplicity. Trivially, the equality ak0 = Pk(a′k, x)
holds for all k = 1, . . . , n − 1 if and only if x ∈ Ca ∩ U , and the complex
number

x
(j)
1 ((P1(a′1, x), a′1), . . . , (Pn−1(a′n−1, x), a′n−1))

thus represents the x1-coordinate of the unique point of intersection of Vj

with the curve Ca passing through x. If x = (x1, . . . , xn) belongs to Vj , this
complex number, seen as a function of a′ = (a′1, . . . , a

′
n−1) is thus constant,

equal to x1. Differentiating according to the x1-coefficient ak1 of Pk gives

∂ak1
x

(j)
1 ((P1(a′1, x), a′1), . . . , (Pn−1(a′n−1, x), a′n−1))

= x
(j)
1 ((P1(a′1, x), a′1), . . . , (Pn−1(a′n−1, x), a′n−1))

×∂ak0
x

(j)
1 (((P1(a′1, x), a′1), . . . , (Pn−1(a′n−1, x), a′n−1)).

We can replace x ∈ Vj with (x(j)
1 (a), . . . , x(j)

n (a)) ∈ Vj , and the desired
relation follows from the equality Pk(a′k, (x

(j)
1 (a), . . . , x(j)

n (a))) = ak0. ¤
By induction, this lemma implies the relation

(l + 1)∂aki
Tr(xl

i) = l∂ak0
Tr(xi)l+1)

for any i = 1, . . . , n, any k = 1, . . . , n− 1, and all integers l ∈ N, from wich
we easily deduce

degak0
Tr(xl

i) ≤ l (∗)
Let {fj = 0} be a local (irreducible) equation for the germ Vj and choose a
C-linear combination u = u1x1+ · · ·+unxn of the xi’s such that ∂uf(pj) 6= 0
for all j = 1, . . . , N . We consider then the caracteristic polynomial of u:

Fu(Y, a) :=
N∏

j=1

(Y − u(pj(a)))

6



whose coefficients are holomorphic functions near a0. Using Newton formu-
lae relating coefficients of Fu to the trace of the powers of u, we deduce from
(∗) that Fu is polynomial in a0 = (a01, . . . , a0,n−1). The function

Qa′(x) := Fu(u, (P1(x, a′1), a
′
1), . . . , (Pn−1(x, a′n−1), a

′
n−1))

is thus a polynomial in (x1, . . . , xn) vanishing on V1∪. . .∪VN . By hypothesis,
we have

dfj ∧ dP1 ∧ · · · ∧ dPn−1(pj) 6= 0 and ∂uf(pj) 6= 0

for all j = 1, . . . , N . The implicit function theorem then implies the equiv-
alence

Qa′(x) = 0, x near Ca ∩ U ⇐⇒ x ∈ V1 ∪ · · · ∪ VN .

Thus, the Zariski closure in X of the algebraic hypersurface {Qa′ = 0} of
U ' Cn does not depend of a′ and gives the desired hypersurface Ṽ . ¤

3 Proof of theorem 3

We can associate to any codimension 2 closed subvariety W ⊂ X its dual
set W ∗ ⊂ X∗ associated to the line bundles (L1, . . . , Ln−1), defined by

W ∗ := {a ∈ X∗, Ca ∩ V 6= ∅}.
From [9], this is an hypersurface in the product of projective spaces X∗,
irreducible if W is, whose multidegree (d1, . . . , dn−1) in X∗ is given by the
intersection numbers

di = W a
n−1∏

i=1,i 6=j

c1(Li), j = 1, . . . , n− 1.

We call the (L1, . . . , Ln−1)-resultant of W , noted RW , the multihomoge-
neous polynomial of multidegree (d1, . . . , dn−1) vanishing on W ∗ (it is de-
fined up to a non zero scalar, but this has no consequence for our purpose).
By linearity, we generalize this situation to the case of cycles:

RP ciWi
:=

∏
(RWi)

ci .

Duality respects rational equivalence: the degree of the resultant of a cycle
W only depends of the class of W in the Chow group of X (see [14], prop.
7 p 100).

From the product formula [13], any rational function fj ∈ H0(X,OX(Ej))
whose zero divisor Hj intersects properly Ṽ and X \ U , gives rise to the
equality :

NeV (fj) =
ReV ·Hj

ReV ·Ej

.
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Since the constant coefficents a0 = (a10, . . . , an−1,0) do not influence on the
asymptotic behavior of the curves Ca outside the affine chart U , the resultant
ReV ·Ej

(a) does not depend on a0. We thus obtain

dega10
N(fj) = dega10

ReV ·Hj
≤ dega1

ReV ·Hj
= dega1

ReV ·Ej
.

Since we deal with homogeneous polynomials in a1, strict inequality in the
previous expression is equivalent to the equality

ReV ·Ej
((a10, 0, . . . , 0), a2, . . . , an−1) ≡ 0.

This happens if and only if all subvarieties C = {s = 0} given by sections
s ∈ Γ(X,⊕n−1

k=2Lk) intersect the set Ṽ ∩ Hj ∩ (X \ U). By a dimension
argument, this would imply that Ṽ has an irreducible branch contained in
X \ U , which is not possible since Ṽ ∩ Ca = V ∩ Ca ⊂ U for a close to a0.
Thus we have proved the equality:

dega10
NeV (fj) = [Ṽ ].[Ej ] a

n−1∏

k=2

c1(Lk)

Since the classes [Ej ], j = 1, . . . , s determine a basis for An−1(X) ⊗Z Q,
the non degenerated natural pairing between the Chow groups A1(X) and
An−1(X) shows that hypothesis of theorem 4 is equivalent to that

[Ṽ ] a
n−1∏

k=2

c1(Lk) = α a
n−1∏

k=2

c1(Lk).

This is equivalent, in turn, to the equality [Ṽ ] = α, by Proposition 1.1 in
[4], which generalizes the Strong Lefschetz theorem. ¤
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